Pre-Recorded Webinars

Showing 11–20 of 44 results

  • Placeholder

    A Raft of EVs and Hybrids are Coming – Will the Buyers Follow?

    Current sales trends for hybrid and electric vehicles will be detailed as will the effect of public policy on these vehicles. California is moving forward even as the US EPA and NHTSA pull back, with states aligning with California that represent 40% of total US sales.

    There is a plethora of new products coming from a variety of automakers, with certain automakers taking their own unique approaches, which will of course differentially affect suppliers and consumers. While China may be “ground zero” for product introductions and sales, the US will see a significant number of new products, particularly if we include vehicles that are “electrified” (as opposed to fully electric vehicles).

    Changes in technology affecting the cost and therefore the price to consumers will be discussed.

    This webinar will focus on the following key topics:

    • Current Sales Trends Regarding EVs and Hybrids
    • Current Status of the EPA/NHTSA Midterm Review
    • Current Status of CA Regulatory Intentions Regarding Fuel Economy and Zero Emission Vehicles
    • Automaker EV Plans Through 2025
    • Other Factors Affecting EV and Hybrid Sales in this Period

    Presenter
    Alan Baum – Principal, Baum & Associates

    Alan Baum formed Baum & Associates in August 2009. The company produces a detailed sales forecast and product life cycle for hybrid and electric vehicles. Baum has experience analyzing the impact of alternative fuel vehicles as well as advanced technologies in internal combustion engines that provide improved fuel economy. Since the 1980s, Baum has produced an automotive production forecast and detailed analysis of the automotive market. He has experience in the area of fuel economy and emissions regulation, the impact of fuel prices, & the market for hybrid and electric vehicles.

    Buy Now
  • Placeholder

    Energy Storage RTE Tutorial Course 1/3: What is Round Trip Efficiency (RTE)? Why is it Important? How Much Does it Cost?

    In the first of this three-part webinar series, a definition of RTE will be presented along with simple system equations that are important to its understanding, determination and management. RTE for some popular battery systems i.e. Lead Acid, Lithium Ion, Vanadium Redox and Nickel Zinc will be computed as examples, and their variation with common variables such as rate, capacity variability & SOC swing will be discussed. The costs of Round Trip inefficiency can be significant, and are experienced by customers either in higher energy generating capital costs and/or higher operating expenses. The calculation of these higher costs will be reviewed, and there will be a discussion on the key industry variables that influence them. Different geographic and customer markets will be considered.

    This webinar will focus on the following key topics:

    • The Importance of RTE to battery selection decisions
    • How does RTE impact CAPEX and/or OPEX for energy storage
    • How is RTE defined and how can it be derived – comparison of different systems
    • An introduction to ancillary equipment energy losses

    Presenter
    Dr. Halle Cheeseman – Founder/President at Energy Blues LLC

    Dr. Halle Cheeseman earned a PhD in Electrochemistry & Corrosion from the University of Nottingham in UK, graduating in 1985. She has held several executive positions in the battery industry over the past 32 years, including Sr. VP of R&D at Spectrum Brands and VP of R&D at Exide Technologies. Her specific battery experience includes Lithium Ion, Zinc Air, Nickel Metal Hydride, Nickel Iron, Alkaline and Lead Acid, focusing on Consumer, Industrial, Automotive & Renewable Energy applications. In July 2017, Dr. Cheeseman founded Energy Blues LLC, an energy storage consulting cooperative comprising 20+ subject matter experts.

    Buy Now
  • Placeholder

    Energy Storage RTE Tutorial Course 2/3: Ampere-Hour (Ah) RTE and Voltage Polarization Energy Losses

    Many aqueous systems have water electrolysis to contend with, and above 70-80% SOC, RTE losses from this competing reaction can be significant. Management of these losses has been evolving for decades, and there are now tried and tested methods mostly related to charging algorithms & partial state of charge (pSOC) cycling. These methods will be reviewed. Relevant for every battery chemistry, Cell Voltage factors, will be separated into eight different components, four each, for the cathode and anode. These will be presented & described. The variables that affect them will be reviewed, including the effects of age & cycling and methods for their ongoing measurement. Techniques to reduce and mitigate polarization will be detailed & possible benefits will be quantified in terms of RTE & cost for different scenarios.

    This webinar will focus on the following key topics:

    • Ah Efficiency losses in aqueous systems
    • Types of Voltage Polarization losses for all systems
    • Strategies and plans for reducing & mitigating efficiency losses
    • Improvement potential for different systems

    Presenter
    Dr. Halle Cheeseman – Founder/President at Energy Blues LLC

    Dr. Halle Cheeseman earned a PhD in Electrochemistry & Corrosion from the University of Nottingham in UK, graduating in 1985. She has held several executive positions in the battery industry over the past 32 years, including Sr. VP of R&D at Spectrum Brands and VP of R&D at Exide Technologies. Her specific battery experience includes Lithium Ion, Zinc Air, Nickel Metal Hydride, Nickel Iron, Alkaline and Lead Acid, focusing on Consumer, Industrial, Automotive & Renewable Energy applications. In July 2017, Dr. Cheeseman founded Energy Blues LLC, an energy storage consulting cooperative comprising 20+ subject matter experts.

    Buy Now
  • Placeholder

    Energy Storage RTE Tutorial Course 3/3: Total Battery System RTE – Ranking and Comparison of Different Battery Chemistries

    RTE impacts of HVAC/Ventilation and Inverters will be described. Batteries generate heat, and this must be dissipated by system cooling and/or taken out of the system. Heat generated can be calculated by looking at IR heating and that generated (net) by exothermic reactions. Examples will include LFP, Li-NMC, Lead Acid and Nickel batteries, both when they are fresh, as well as at their end of useful life. The overall ancillary equipment energy usage will be listed for these systems, and a % RTE loss will be calculated for both nominal rate and high rate applications. Commentary will be provided for other systems. RTE will be summarized and ranked for most energy storage battery chemistries including ZA, NaS, LiS, Saltwater, Liquid Metal, Zinc Bromine and Fuel Cells.

    This webinar will focus on the following key topics:

    • RTE impacts of Inverters and HVAC
    • RTE impacts for ancillary equipment for different systems
    • RTE numbers for most battery systems being considered for energy storage

    Presenter
    Dr. Halle Cheeseman – Founder/President at Energy Blues LLC

    Dr. Halle Cheeseman earned a PhD in Electrochemistry & Corrosion from the University of Nottingham in UK, graduating in 1985. She has held several executive positions in the battery industry over the past 32 years, including Sr. VP of R&D at Spectrum Brands and VP of R&D at Exide Technologies. Her specific battery experience includes Lithium Ion, Zinc Air, Nickel Metal Hydride, Nickel Iron, Alkaline and Lead Acid, focusing on Consumer, Industrial, Automotive & Renewable Energy applications. In July 2017, Dr. Cheeseman founded Energy Blues LLC, an energy storage consulting cooperative comprising 20+ subject matter experts.

    Buy Now
  • Placeholder

    Battery EIS Tutorial Course 1/4: Electrochemical Impedance Spectroscopy (EIS) – Fundamentals and Principles

    Electrochemical Impedance Spectroscopy (EIS) will be described from a theoretical point of view. Various representations (Nyquist, Bode, etc.) of impedance data will be introduced. Guidelines on how to interpret the data will also be provided.

    This webinar will focus on the following key topics:

    • Definition of impedance
    • Various representations
    • Impedance interpretation: the deductive and the inductive way

    Presenter
    Dr. Nicolas Murer – Product Manager and Applications Engineer at Bio-Logic SAS, France

    Dr. Nicolas Murer is a Product Manager and Applications Engineer at Bio-Logic SAS, France, which designs and manufactures high performance research grade instrumentation and software : potentiostats/galvanostats with built-in Electrochemical Impedance Spectroscopy (EIS), Battery Cyclers, Frequency Response Analyzers for materials analysis, and scanning probe electrochemical workstations. Nicolas received his engineering diploma from Polytechnic Institute of Grenoble in electrochemistry and materials in 2003. He then received his Ph.D. at Université de Bourgogne in 2008. Prior to joining Bio-Logic, he was a post-doctorate at the Ohio State University, Columbus, Ohio (USA).

    Buy Now
  • Placeholder

    Battery EIS Tutorial Course 2/4: EIS at Higher Frequencies for Battery Studies – Good or Bad Indicators for SoC and SoH?

    Impedance data at higher frequencies can be used, to some extent, as indicators of the State of Charge (SoC) or State of Health (SoH) of the battery. A discussion of the relevance of this indicator, as well as the most accurate way to determine this value, will be discussed.

    This webinar will focus on the following key topics:

    • Typical shape of an impedance graph on a battery
    • How can it be used for battery monitoring, optimization, and sorting ?
    • Various ways to measure this value and our recommendation

    Presenter
    Dr. Nicolas Murer – Product Manager and Applications Engineer at Bio-Logic SAS, France

    Dr. Nicolas Murer is a Product Manager and Applications Engineer at Bio-Logic SAS, France, which designs and manufactures high performance research grade instrumentation and software : potentiostats/galvanostats with built-in Electrochemical Impedance Spectroscopy (EIS), Battery Cyclers, Frequency Response Analyzers for materials analysis, and scanning probe electrochemical workstations. Nicolas received his engineering diploma from Polytechnic Institute of Grenoble in electrochemistry and materials in 2003. He then received his Ph.D. at Université de Bourgogne in 2008. Prior to joining Bio-Logic, he was a post-doctorate at the Ohio State University, Columbus, Ohio (USA).

    Buy Now
  • Placeholder

    Battery EIS Tutorial Course 3/4: Lower Frequency Impedance Measurements – What Information Can we Get on a Battery?

    In batteries involving intercalation of species, by using the impedance response at lower frequencies, it is possible to extract the diffusion coefficient of the intercalated species and monitor its change during discharge and charge.

    Low frequency impedance can also be used to estimate the capacity of a battery. Several strategies are given to perform reliable measurements.

    This webinar will focus on the following key topics:

    • Impedance data at lower frequencies that can be used to extract diffusion parameters of intercalated species
    • Several possibilities that are available, depending on the type of impedance graph obtained

    Presenter
    Dr. Nicolas Murer – Product Manager and Applications Engineer at Bio-Logic SAS, France

    Dr. Nicolas Murer is a Product Manager and Applications Engineer at Bio-Logic SAS, France, which designs and manufactures high performance research grade instrumentation and software : potentiostats/galvanostats with built-in Electrochemical Impedance Spectroscopy (EIS), Battery Cyclers, Frequency Response Analyzers for materials analysis, and scanning probe electrochemical workstations. Nicolas received his engineering diploma from Polytechnic Institute of Grenoble in electrochemistry and materials in 2003. He then received his Ph.D. at Université de Bourgogne in 2008. Prior to joining Bio-Logic, he was a post-doctorate at the Ohio State University, Columbus, Ohio (USA).

    Buy Now
  • Placeholder

    Battery EIS Tutorial Course 4/4: Factors Affecting EIS Measurements – How to Check and Correct

    When performing an impedance measurement, it is necessary to ensure that the modulation is low enough such that the behavior of the system is linear. It should also be confirmed that the system does not vary in time, and that its stationary state is reached. Several strategies are given to check and correct these phenomena.

    This webinar will focus on the following key topics:

    • For reliable EIS measurements, it should be checked that the response of the system is linear, time-invariant and stationary
    • Several strategies are presented to perform reliable impedance measurements

    Presenter
    Dr. Nicolas Murer – Product Manager and Applications Engineer at Bio-Logic SAS, France

    Dr. Nicolas Murer is a Product Manager and Applications Engineer at Bio-Logic SAS, France, which designs and manufactures high performance research grade instrumentation and software : potentiostats/galvanostats with built-in Electrochemical Impedance Spectroscopy (EIS), Battery Cyclers, Frequency Response Analyzers for materials analysis, and scanning probe electrochemical workstations. Nicolas received his engineering diploma from Polytechnic Institute of Grenoble in electrochemistry and materials in 2003. He then received his Ph.D. at Université de Bourgogne in 2008. Prior to joining Bio-Logic, he was a post-doctorate at the Ohio State University, Columbus, Ohio (USA).

    Buy Now
  • Placeholder

    Electrochemical Impedance Spectroscopy (EIS) Quality Indicators

    The response of a linear and time invariant system to a sinusoidal stimulus of a given frequency is a sinus wave of the same frequency. The amplitude spectra obtained by the Fourier transform will reveal only one spectral line. In the case of a nonlinear system the amplitude spectra will contain several spectral lines called harmonics. The total harmonic distortion (THD) coefficient for N chosen harmonics can be used as an indicator of the system nonlinearity. In the case of a non-stationary system spectral lines appears in the vicinity of the main harmonic. The non-stationary distortion (NSD) coefficient calculated as the RMS ratio of amplitudes of the near-side frequencies to the amplitude of the fundamental can be used as an indicator for non-stationarity.

    Examples of THD and NSD calculations are given highlighting the quality of low frequency impedance measurements on batteries.

    This webinar will focus on the following key topics:

    • General requirements for good impedance measurements
    • Effects of non-linear systems on EIS measurements
    • Effects of non-stationary systems on EIS measurements
    • THD as an indicator of system non-linearity
    • NSD as an indicator of system non-stationarity

    Presenter
    Dr. Bogdan Petrescu – Senior Scientist at Bio-Logic SAS, France

    Bogdan Petrescu is a senior scientist at Bio-Logic Science Instruments. He received his Ph.D in both fields of electrochemistry and electronics in 2002 from the Polytechnic Institute of Grenoble and the Polytechnic University of Bucharest respectively. He was involved for many years in the development of the Bio-Logic potentiostats and battery cyclers. He has a strong expertise in the field of instrumentation for electrochemistry research and more particularly in the research and development of energy storage devices such as batteries and supercapacitors.

    Buy Now
  • Placeholder

    Preventing Li Ion Battery Failures From a Manufacturing and Design Perspective

    How can you be proactive and make sure your cell supplier is the right one and you don’t end up with thermal events and field failures? Is it enough to qualify a cell manufacturer according to industry standards? The answer is that the majority of compliance based testing is related to abuse tolerance. However, the vast majority of field failures do not occur under abuse scenarios, but happen under normal operating conditions due to manufacturing flaws or design and system tolerance issues that cause internal shorts. In this webinar, you will learn about common lithium ion battery failure modes and how to be proactive in preventing these.

    This webinar will focus on the following key topics:

    • Gain an understanding of lithium ion battery failure mechanisms and the pathway to thermal events
    • Learn how cell design impacts battery safety and reliability
    • Learn the basic steps in a lithium ion cell manufacturing process, and how the process controls affect safety and reliability
    • Come away with a checklist to qualify your cell manufacturer

    Presenter
    Vidyu Challa – Technical Director at DfR Solutions

    Vidyu Challa is Technical Director at DfR Solutions where she works on battery reliability and safety issues. Dr. Challa helps customers with their battery challenges including design reviews, manufacturing audits and supplier qualification. She obtained a PhD from CALCE Electronic Products and Systems Center at the
    University of Maryland. She has broad based expertise that includes engineering technology start-up experience, product development, R&D, and business development. Dr. Challa has published her work in journals, presented at conferences and written blog articles.

    Buy Now