Pre-Recorded Webinars

Showing 11–20 of 76 results

  • Placeholder

    The Fundamentals of Battery Module and Pack Test

    The battery market is growing rapidly due to the acceleration of electrification in the automotive, aerospace and energy industries. In turn, batteries have become the pivotal component for electrifying automobiles, planes, trains and the grid.  Therefore, it’s imperative that today’s engineers, researchers, and managers understand the fundamentals of how to test batteries and the most productive approaches to ensure product performance, safety and time to market.

    Battery pack and module testing is becoming more critical than ever. Today, engineers face new challenges including increased complexity of the tests and set-ups, long development and test times, addressing safety requirements and avoiding hazards. Furthermore, testing to the application requires emulating real-world conditions by reacting to CAN, BMS and other communication protocols.

    This webinar will focus on the following key topics:

    • Industry trends impacting battery test
    • The fundamentals of battery module/pack testing
    • How to reduce time to market and improve engineering productivity
    • Next generation solutions for battery test

    Presenter
    Martin Weiss – Product Director at NH Research

    Martin has over 25 years of experience developing automated test systems for evaluating power electronics and battery systems. As the Product Director at NH Research (NHR), Martin is responsible for the technical development and launch of new, industry-driven hardware and software test solutions. Previously, he worked as a Principal Design Engineer for high-tech companies including Vocollect, Marconi Communications, and Telxon.

    NH Research is a proud sponsor of this event.

    Buy Now
  • Placeholder

    Experimental Investigation of Cascading Failure in Lithium Ion Cell Arrays – Impact of Cathode Chemistry

    In lithium ion arrays, thermal runaway may propagate from a failing cell to neighboring cells and grow into a large-scale fire in a phenomenon referred to as cascading failure. A new experimental setup was developed to investigate cascading failure using 12 cell arrays constructed from cells of 18650 form factor. Thermal runaway was initiated in one cell using an electric heater and observed to propagate through the array using temperature sensors. Cascading failure was studied in nitrogen or air environment to elucidate the impact of combustion. The cell temperature allowed calculation of row-to-row propagation speed in arrays of different cathode chemistries. The yields of oxygen, carbon monoxide, carbon dioxide, total hydrocarbons and hydrogen were measured; corresponding fire hazards were assessed.

    This webinar will focus on the following key topics:

    • Thermal runaway propagation
    • Thermal runaway hazards
    • Failure dynamics
    • Flammability and toxicity
    • Failure Mitigation and suppression

    Presenter
    Ahmed Said – Postdoc Fellow, Worcester Polytechnic Institute

    Ahmed Said is a Postdoctoral Fellow at the Department of Fire Protection Engineering at Worcester Polytechnic Institute (WPI). He is broadly interested in problems related to fire, combustion, and thermal sciences. He is currently engaged in several projects: fire safety of lithium ion batteries, wildland fires, and fire spread on façade systems. He earned his PhD in Mechanical Engineering in 2020 from the University of Maryland, College Park. He also received his BS and MSc in Mechanical Engineering from Cairo University.

    Buy Now
  • Placeholder

    Battery Design Optimization Using Cell Cooling Coefficient

    Lithium-ion cells and battery packs are not designed to maximize the performance of thermal management systems. As a result, every cell in use is performing sub optimally, and is degrading needlessly fast. The root cause of the problem is the lack of information surrounding the thermal performance of lithium-ion cells. Cell Cooling Coefficients (CCCs) have been developed to quantify the cell thermal performance. They can immediately tell the user exactly how a cell will behave in a battery pack, vital information for the design of any thermal management system. They can also be used to inform redesign, both at the cell level and at the battery pack level.

    This webinar will focus on the following key topics:

    • Battery heat generation: why, and why is it complex
    • Thermal management in battery packs
    • The problems with battery design: energy density above all else
    • Cell Cooling Coefficient as a universal metric
    • Using the Cell Cooling Coefficient to evaluate battery design and propose beneficial redesigns

    Presenter
    Alastair Hales – Research Associate, Imperial College London

    Alastair earned a PhD in Mechanical Engineering from the University of Bristol in 2016. Prior to joining Imperial College London in 2018, Alastair worked for SUEZ Advanced Solutions UK, designing equipment closely linked to his PhD topic, and as a Research Associate at Queen Mary University of London. Alastair’s existing work is focused around the thermal management and thermal effects of lithium-ion cells. Alastair led the work introducing the Cell Cooling Coefficient as a universal metric to quantify battery thermal performance. He is now building upon this research to develop capability for cell design optimization.

    Buy Now
  • Placeholder

    Approaches to Recovering Critical Materials From Spent Lithium-Ion Batteries

    FREE Webinar – Li-Cycle is a proud sponsor of this event.

    As the world transitions towards sustainability and low carbon emissions, lithium-ion batteries are being used across a broad spectrum of products and industries. The automotive industry, in particular, estimates 559 million of electric vehicles will be on the road by 2040. Consequently, lithium-ion battery waste is forecasted to hit over 11 million tonnes by 2030.

    How can the world deal with this oncoming tsunami of lithium-ion batteries?

    The audience will have the answer after this webinar as this presentation will walk through both global and future approaches to dealing with end-of-life batteries and explore the importance of recovering critical materials from lithium-ion batteries to meet future demand.

    This webinar will focus on the following key topics:

    • Global end-of-life lithium-ion battery market opportunity
    • Recycling vs reuse
    • Incumbent technologies for ‘recycling’ lithium-ion batteries
    • New technologies and techniques for recycling lithium-ion batteries
    • Comparative benefits of recycling technologies

    Presenters
    Ajay Kochhar – Co-Founder, President and CEO at Li-Cycle
    Tim Johnston – Co-Founder, Executive Chairman at Li-Cycle

    Ajay Kochhar is a Co-Founder, President and CEO of Li-Cycle Corporation, an industry leading lithium-ion battery resource recovery company. As President and CEO, Ajay is responsible for all strategic aspects of the company and overall leadership. Ajay has been pivotal in leading the company from an idea to a commercially operating lithium-ion battery recycling company.

    Tim Johnston is a Co-Founder and Executive Chairman of Li-Cycle Corporation. Since 2019, Tim has lead Operations, Research & Development, and Capital Projects at Li-Cycle. Prior to that as Non-Executive Chairman, he helped support the strategic decision making and guide the R&D team through critical phases of the company’s development.

    Li-Cycle is a proud sponsor of this event.

    Buy Now
  • Placeholder

    Battery Analytics Tutorial Course 1/3: Battery Analytics and the Role of the BMS

    This one-hour course will explore how various energy storage industry experts define the term “battery analytics.” It will also examine how the battery management system (BMS) is used to control the battery and provide real-time performance reporting, the lowest level of battery analytics.

    This webinar will focus on the following key topics:

    • The different types of battery analytics
    • How a BMS works and why it is the most basic component of any battery analytics platform
    • Real-time performance algorithms as the lowest level of analytics

    Presenter
    Michael Worry – CEO at Nuvation Energy

    Michael Worry founded Nuvation in 1997 and has grown the company over 21 years into a thriving electronic products and engineering services firm with offices in Sunnyvale, California and Waterloo, Ontario Canada. He is the CEO of Nuvation Energy, a provider of battery management systems and engineering services for large-scale energy storage systems.

    Buy Now
  • Placeholder

    Battery Analytics Tutorial Course 2/3: Data Capture and Trend Reporting

    This one-hour webinar is Part 2 of a 3-part series. Battery management systems take large amounts of sensor data readings on a continual basis as part of their functionality. Battery analytics involves leveraging battery performance data for tasks such as identifying issues that can reduce battery life, flagging behavior that can negatively impact energy storage system performance, and predicting remaining cell and pack life.

    This webinar will focus on the following key topics:

    • Sensor data capture, aggregation and manipulation into performance reports
    • Real-life examples will be shared, where aggregated historical data was analyzed and anomalous behaviors were identified
    • Also shared will be the inspections and testing of the pack to identify the cause of the anomalous behavior, and the discovery and resolution of the problems that caused the anomalies

    Presenter
    Michael Worry – CEO at Nuvation Energy

    Michael Worry founded Nuvation in 1997 and has grown the company over 21 years into a thriving electronic products and engineering services firm with offices in Sunnyvale, California and Waterloo, Ontario Canada. He is the CEO of Nuvation Energy, a provider of battery management systems and engineering services for large-scale energy storage systems.

    Buy Now
  • Placeholder

    Battery Analytics Tutorial Course 3/3: Predictive Modelling, Machine Learning, and AI

    This one-hour webinar is Part 3 of a 3-part series. It moves from a discussion of data capture and trend reporting explored in Part 2 to predictive modeling, machine learning, and artificial intelligence as the next levels of battery analytics.

    We will examine how machine learning and artificial intelligence can be implemented to identify hidden correlations between disparate data and energy storage system performance, and also independently take pre-emptive action to increase ESS reliability and battery life.

    Real-life examples will be shared where predictive models could have flagged anomalous behaviors that were experienced in the field, and led to corrective actions to mitigate unplanned costs and labor.

    This webinar will focus on the following key topics:

    • Coming to Terms – Understanding the differences between machine learning, artificial intelligence, deep learning, and rule-based systems
    • Predictive Modeling Approaches – using data mining and probability to forecast outcomes
    • What’s Next – How AI and Machine Learning will impact large-scale battery energy storage

    Presenter
    Michael Worry – CEO at Nuvation Energy

    Michael Worry founded Nuvation in 1997 and has grown the company over 21 years into a thriving electronic products and engineering services firm with offices in Sunnyvale, California and Waterloo, Ontario Canada. He is the CEO of Nuvation Energy, a provider of battery management systems and engineering services for large-scale energy storage systems.

    Buy Now
  • Placeholder

    Energy Storage Applications – Front-of-the-Meter and Behind-the-Meter Perspective

    The importance of energy storage is now well acknowledged and known by the energy sector. The pertinent question therefore is how and where. Energy storage applications are well spread across the value chain of energy. Electric Vehicles of course find the biggest deployment area for energy storage, but the opportunity present is much more largely spread. Right from front-of-the-meter (FTM) applications like DSM management, peak shifting, load balancing, providing ramping support to behind-the-meter (BTM) applications like DG optimization, microgrid sustenance, datacenters etc.

    This presentation will explain the opportunities present in the Indian market, and also throw light on various case studies with storage at FTM and BTM levels.

    This webinar will focus on the following key topics:

    • Overall market forecast – opportunities in India
    • Energy storage applications with renewables
    • Energy storage applications for Utilities and DISCOMs
    • Behind-the-Meter applications
    • EV applications

    Presenter
    Debmalya Sen – Senior Consultant, Emerging Technologies at Customized Energy Solutions

    Debmalya is an energy sector professional with around a decade of asset management and techno-commercial experience across coal, gas, renewable energy (solar and wind), high voltage sub-station operations, datacenter development, EV infrastructure development, innovation and sustainability. He is presently working as Senior Consultant – Emerging Technologies with Customized Energy Solutions. He works closely on energy storage and its application to industry, to help organizations strategize on new business lines and to find applications to integrate storage with existing assets. This includes areas like deployment of storage for DG optimization, RE firming, DSM Management, Utility level storage installation, storage application to defer T&D Investment decisions and Electric vehicle adoption strategies to name a few.

    Buy Now
  • Placeholder

    Myths and Realities in Battery Engineering for EVs

    As the automotive industry continues an aggressive push toward electrification, misconceptions abound as to the best way to run an EV battery program. Mobility companies are set up for failure if they’re of the mindset to outsource battery engineering, or that they can easily “set and forget” a battery after initial qualification. These missteps can lead to catastrophic product failures including delayed product launches, high-volume RMAs, recalls or worse. In this webinar we’ll review the most common myths to help ensure that your organization doesn’t have to learn the hard way.

    This webinar will focus on the following key topics:

    • Myths and misconceptions about battery engineering
    • Consequences of believing these myths
    • Realities of battery engineering
    • Common pitfalls and how to avoid them

    Presenter
    Dr. Tal Sholklapper – CEO at Voltaiq

    Dr. Tal Sholklapper has an extensive record of success as a cleantech engineer and entrepreneur. Prior to founding Voltaiq, he worked as the lead engineer on a DOE ARPA-E funded project at the CUNY Energy Institute, developing an ultra low-cost grid-scale battery. Before joining CUNY, Dr. Sholklapper co-founded Point Source Power, a low cost fuel-cell startup based on technology he developed while at Lawrence Berkeley National Laboratory and UC Berkeley, where he also did his graduate work in Materials Science and Engineering. As a Materials Postdoctoral Fellow at LBNL, he successfully led the transfer of lab-scale technology to industry partners.

    Voltaiq is a proud sponsor of this event.

    Buy Now
  • Placeholder

    Battery Qualification 101

    FREE Webinar – Voltaiq is a proud sponsor of this event.

    Batteries are the most complex and failure prone components in modern devices. To mitigate risks, companies extensively qualify battery cells and packs, a time consuming and expensive process that can lead to delays in product launch if issues are surfaced. Effectively managing time, personnel, and equipment is critical to meeting deadlines while also ensuring products meet safety and performance requirements.

    In this webinar, we’ll provide an introduction to battery qualification and show interactive demonstrations of performance qualifications. We’ll also highlight best practices and value-added analytics to ensure that quality issues are surfaced soon as possible so that product release timelines are met.

    This webinar will focus on the following key topics:

    • Discuss the need to qualify batteries
    •  Discuss the different types of battery qualification
    •  Introduction to common performance qualifications — rate capability and cycle life among others
    • Interactive analysis demonstration, first using traditional tools and then using a Battery Intelligence System
    •  Best practices to ensure product release timelines are met

    Presenter
    Dr. Tal Sholklapper – CEO at Voltaiq

    Dr. Tal Sholklapper has an extensive record of success as a cleantech engineer and entrepreneur. Prior to founding Voltaiq, he worked as the lead engineer on a DOE ARPA-E funded project at the CUNY Energy Institute, developing an ultra low-cost grid-scale battery. Before joining CUNY, Dr. Sholklapper co-founded Point Source Power, a low cost fuel-cell startup based on technology he developed while at Lawrence Berkeley National Laboratory and UC Berkeley, where he also did his graduate work in Materials Science and Engineering. As a Materials Postdoctoral Fellow at LBNL, he successfully led the transfer of lab-scale technology to industry partners.

    Voltaiq is a proud sponsor of this event.

    Buy Now