Pre-Recorded Webinars

Showing 21–30 of 76 results

  • Placeholder

    Battery Performance Testing – Pay Attention to the Details!

    The success of an energy storage project for stationary applications depends, for a large part, on how well the battery performs over time. Since there are little case studies showing real-world lifetime performance comparisons for various technologies the battery selection is primarily based on the performance data in a laboratory environment. Knowledge of the test conditions under which the data is obtained is critical to determine the suitability of the battery technology for the intended application. The influence of test conditions on the battery performance, and consequently on the battery selection process is discussed. The presentation presents real-world examples to emphasize on how subtle and often unspecified test conditions can affect the performance and lead to an un-optimized battery solution.

    This webinar will focus on the following key topics:

    • Battery selection process for stationary energy storage
    • Primary test conditions commonly presented
    • But…what’s hidden beneath the surface?
    • Examples of some subtle test conditions, if ignored, may lead to an un-optimized battery solution
    • How a good understanding of the product performance under different conditions can empower our customers with operating options

    Presenter
    Ashok Saraswat – Director, Energy Storage Research at NEC Energy Solutions

    Ashok Saraswat is working as Director, Energy Storage Research at NEC Energy Solutions located in the Boston area in the United States. After obtaining Ph.D. from Indian Institute of Technology, Delhi, India, Ashok Saraswat began his career in battery systems with a focus on Li-ion batteries. He has been involved in R&D, product and process development, assembly processes, and battery applications in various market segments including consumer electronics, aerospace and stationary storage.

    Buy Now
  • Placeholder

    Adding Intelligent Battery Management to Lead-Acid Energy Storage Systems

    Lead batteries are resilient and have a low likelihood of catastrophic failure. However, their lifespan can be significantly reduced when operated outside of manufacturer specifications. The extension of lead battery life through active battery management is becoming a compelling value proposition for vendors of lead-based energy storage systems.

    The evolving regulatory environment governing energy storage safety is also impacting how both lead and lithium chemistries are to be managed moving forward. Join Nuvation CEO Michael Worry to explore the reasons why active battery management is becoming adopted in large-scale lead battery applications, and how the changing regulatory environment is impacting lead-based energy storage.

    This webinar will focus on the following key topics:

    • Controlling off-gassing in vented and VRLA lead batteries
    • Emerging functional safety regulations and UL 1973
    • Using a BMS to reduce the levelized cost of energy
    • Automating stack connection sequencing in a multi-stack ESS
    • Lead-based energy storage system deployments

    Presenter
    Michael Worry – CEO at Nuvation Energy

    Michael Worry founded Nuvation in 1997 and has grown the company into a thriving electronic products and engineering services firm with offices in Sunnyvale, California and Waterloo, Ontario Canada. He is the CEO of Nuvation Energy, a provider of battery management systems and engineering services for large-scale energy storage systems.

    Buy Now
  • Placeholder

    Advanced Battery EIS Tutorial Course 1/2: How to Ensure the Quality of Your EIS Measurements

    Electrochemical Impedance Spectroscopy (EIS) is a technique that can be performed by controlling the potential or current. Controlling the current can limit the effect of the time variance of the system, but may also more easily lead the system to its non-linear behavior. We will show in this case how an adaptive EIS method can be used to circumvent this effect, and how we can only take the best from current control.

    This webinar will focus on the following key topics:

    • How to choose between PEIS and GEIS ?
    • Non-linearity: the problems it brings and how to avoid them
    • A new groundbreaking technique to control amplitude in GEIS
    • EIS quality indicators

    Presenter
    Dr. Nicolas Murer – Product Manager and Applications Engineer at Bio-Logic SAS, France

    Dr. Nicolas Murer is a Product Manager and Applications Engineer at Bio-Logic SAS, France, which designs and manufactures high performance research grade instrumentation and software : potentiostats/galvanostats with built-in Electrochemical Impedance Spectroscopy (EIS), Battery Cyclers, Frequency Response Analyzers for materials analysis, and scanning probe electrochemical workstations. Nicolas received his engineering diploma from Polytechnic Institute of Grenoble in electrochemistry and materials in 2003. He then received his Ph.D. at Université de Bourgogne in 2008. Prior to joining Bio-Logic, he was a post-doctorate at the Ohio State University, Columbus, Ohio (USA).

    Buy Now
  • Placeholder

    Advanced Battery EIS Tutorial Course 2/2: Monitoring Battery Resistance Parameters as a Function of SoH and SoC

    There is a need for indicators that can accurately reflect the State of Charge (SoC) and State of Health (SoH) of a battery as a single cell or in packs. Battery parameters related to resistance are excellent candidates for such indicators. AC and DC methods can be used to determine resistance. The DC method is fast and simple, but it gives a composite parameter, whereas the AC method is more advanced and gives complete parameters. After giving examples of data on single cells, we will present three-electrode, battery packs, and modules measurements.

    This webinar will focus on the following key topics:

    • Obtaining battery parameters via DC and AC methods
    • The pros and cons of each method
    • How these parameters can be used to indicate SoC and SoH
    • Data examples
    • Three-electrode single cell and measurements on battery pack or module

    Presenter
    Dr. Nicolas Murer – Product Manager and Applications Engineer at Bio-Logic SAS, France

    Dr. Nicolas Murer is a Product Manager and Applications Engineer at Bio-Logic SAS, France, which designs and manufactures high performance research grade instrumentation and software : potentiostats/galvanostats with built-in Electrochemical Impedance Spectroscopy (EIS), Battery Cyclers, Frequency Response Analyzers for materials analysis, and scanning probe electrochemical workstations. Nicolas received his engineering diploma from Polytechnic Institute of Grenoble in electrochemistry and materials in 2003. He then received his Ph.D. at Université de Bourgogne in 2008. Prior to joining Bio-Logic, he was a post-doctorate at the Ohio State University, Columbus, Ohio (USA).

    Buy Now
  • Placeholder

    The US 2020 Market for Electrified Vehicles: Forward, Backward, or Sideways?

    FREE Webinar – PlugVolt is a proud sponsor of this event.

    Sales of battery electrics and hybrids were up last year, while plug in hybrids dropped even as the number of entries increased. New products are coming in 2020 and beyond; will sales rise quickly enough to keep the market moving forward? Product, price, incentives, features, branding, and marketing all matter and will be discussed.

    For the second year in a row, we expect Tesla’s US sales to decline, although each category (e.g., hybrids, plug ins, battery electrics) will increase with the strongest increase in…regular and mild hybrids.

    Major changes in costs and technology, as well as the impact of suppliers in these areas, will be discussed, as well as expectations for the near-term.

    This webinar will focus on the following key topics:

    • Review of 2019 Sales with a 2020 Forecast
    • How Regulation in the US and Beyond Is Moving the Market
    • Regulation Matters, But Company Strategies Often Matter More
    • Is There a Gap Between Strategy and Reality?
    • The Role of Suppliers and Technology

    Presenter
    Alan Baum – Principal, Baum & Associates

    Alan Baum formed Baum & Associates in August 2009. He has a long record of analyzing the impact of alternative fuel vehicles as well as advanced technologies in internal combustion engines that provide improved fuel economy. Alan has been a contributor to a number of studies in this area including “Driving Growth: How Clean Cars and Climate Policy Can Create Jobs” and other projects analyzing the impact of fuel saving technologies on the auto industry. Since the 1980s, Alan has produced a detailed automotive production forecast and provided analysis of the automotive and medium- & heavy-duty truck markets.

    Buy Now
  • Placeholder

    Battery Selection Tutorial Course 1/3: Selecting your Cell and Cell Manufacturer(s)

    After designing your product, you need to ensure the battery with which you are operating it will ensure the right performance and lifetime. When deciding this, narrowing down which chemistry (e.g. Li-ion, lithium primary, NiMH, etc.) best fits your product and which form factor are some of the first steps. Choosing a cell design (high-power vs. high-energy, for example) is another step and finally, finding the right cell manufacturer to fabricate your cells and packs. This webinar is the first in a three-part series on designing the right battery for your product. It will cover many of the key differences in chemistries, form factors, and cell designs and other best practices.

    This webinar will focus on the following key topics:

    • Choosing the right chemistry for your application
    • Choosing the right form factor
    • Choosing cell designs (e.g. high power vs. high-energy)

    Presenter
    Exponent – a multidisciplinary engineering and scientific consulting firm with significant experience in various aspects of battery design, safety testing and failure analysis.

    Buy Now
  • Placeholder

    Battery Selection Tutorial Course 2/3: Beyond the Standards: Device-Specific Testing

    After choosing your cell and manufacturer (Part 1 of this series), most likely, they will have passed the tests of various standards organizations. However, depending on your operating environment, you may need to go above and beyond the baseline to ensure your product operates as intended. This webinar is Part 2 in a three-part series and will review a variety of factors to consider in your device-specific testing, including designing tests to predict the outcomes of various user-abuse scenarios, understanding the mechanisms of gas generation, capacity retention based on different voltage windows, and what happens if you need to cycle your cells outside of their operating range (outside in an Arizona summer or Minnesota winter, for example).

    This webinar will focus on the following key topics:

    • User-abuse scenarios to prevent against
    • Causes and effects of various gas generation mechanisms
    • Voltage limits

    Presenter
    Exponent – a multidisciplinary engineering and scientific consulting firm with significant experience in various aspects of battery design, safety testing and failure analysis.

    Buy Now
  • Placeholder

    Battery Selection Tutorial Course 3/3: Integrating Your Battery Into Your Product – Designing for Worst-Case Scenarios

    The last part in Exponent’s three-part series, this webinar will focus on the finished product from the viewpoint of the battery. How can you best protect your battery within your device? Is your battery going to be user-replaceable? If you’re creating multi-cell packs, how should they be separated from (yet still connected to) each other? Should a thermal event occur, how can you prevent that from cascading through the whole pack? This webinar will help to answer many of those questions, and discuss design questions to help safeguard your battery pack throughout its entire lifecycle.

    This webinar will focus on the following key topics:

    • Creating multi-cell packs
    • Containing thermal runaway events

    Presenter
    Exponent – a multidisciplinary engineering and scientific consulting firm with significant experience in various aspects of battery design, safety testing and failure analysis.

    Buy Now
  • Placeholder

    Certification Challenges for Secondary Use EV Batteries

    As the 1st generation of Lithium-ion based hybrid and battery electric vehicles are reaching end-of life, or original traction batteries are being replaced with new batteries, the interest in secondary life or repurposing of these batteries continues to grow. Lithium-ion batteries present several challenges to Auto OEM’s, Recyclers and waste operators. Repurposing of EV batteries for non-automotive applications also creates new challenges for certification and acceptance by AHJ’s (Authorities Having Jurisdiction). This webinar discusses the current market challenges and concerns, while providing a roadmap of the current options for various usage cases of reused or repurposed EV batteries.

    This webinar will focus on the following key topics:

    • Understand the usage cases for secondary life batteries
    • Review market drivers for secondary use batteries
    • Review the concerns of battery and cell manufacturers with re-use of lithium-ion batteries
    • Discuss the unique challenges to certifying used batteries for new applications
    • Discuss current options for certification in the US market

    Presenter
    Rich Byczek – Global Technical Director for Transportation Technologies at Intertek

    Rich has over 20 years of experience in product development and validation testing, 14 of which have been spent at Intertek. Mr. Byczek is also an expert in the areas of energy storage, audio equipment and EMC testing. He sits on several SAE, IEC, UL and ANSI standards panels, focusing on Energy Storage and Electric Vehicle Technologies. He holds a Bachelor of Science in Electrical Engineering from Lawrence Technological University in Southfield, Michigan, and is based at the Intertek facility located in Plymouth, Michigan.

    Buy Now
  • Placeholder

    Simulation Of Battery Crash – Where Do We Stand?

    FREE Webinar – PlugVolt is a proud sponsor of this event.

    Safety is an important functional requirement in the development of large-format, energy-dense, lithium-ion (Li-ion) batteries used in electrified vehicles. Computer aided engineering (CAE) tools that predict the response of a Li-ion battery pack to various abusive conditions can provide valuable insight during the design phase and reduce the need for physical testing.

    However, the physics under such simulations is quite complex, and involves structural, thermal, electrical and electrochemical behaviors all coupled together and spanning length and time scales of different orders of magnitude.

    In this talk, ANSYS LS-DYNA’s capabilities in the area of battery simulation will be introduced, current numerical challenges discussed, as well as a potential way forward towards including battery models in full car crash simulations.

    This webinar will focus on the following key topics:

    • The state of battery crash simulations
    • Numerical challenges
    • Capabilities of the commercial finite element code in ANSYS LS-DYNA
    • A path towards capturing the thermal/mechanical/electromagnetic behavior of batteries during a full vehicle crash

    Presenter
    Inaki  Caldichoury  – Software Developer at ANSYS

    Inaki has been with ANSYS as a Software Developer since 2011, with a special focus on LS-DYNA and the electromagnetic and CFD solvers.

    Buy Now