July 10, 2022 | 1:00 pm

$99.00

As electric vehicles (EVs) become more widespread, ensuring lithium-ion battery safety during collisions is increasingly important. Mechanical impacts can cause internal damage, leading to short circuits, thermal runaway, or explosions. Protective enclosures help reduce deformation, but effective design demands accurate failure predictions. This webinar presents a comprehensive approach for modeling mechanical abusive loads on EV batteries, incorporating experiments, material characterization and the Sahraei Failure Criterion—a universal failure model based on microstructural simulations of the electrode-separator assembly. Model validations will be presented across various cell types and loading scenarios in commercial software such as Ansys LS-Dyna and Altair Radioss. Combined with multi-scale simulations, this framework supports the development of safer, more resilient battery systems for EVs.

This webinar will focus on the following key topics:

• Experimental Methods for Material Characterization
• Multiscale Modeling from Components to Cells and Battery Packs
• Short Circuit Prediction with Sahraei Failure
• Applicability to Pouch, Cylindrical and Prismatic Cells

Presenter
Elham Sahraei – Associate Professor at Temple University

Elham Sahraei is an Associate Professor and Director of the Electric Vehicle Safety Lab at Temple University. Her research focuses on lithium-ion battery safety under extreme mechanical loading. She is the founder of the Center for Battery Safety, advancing experimental and simulation methods for battery modeling. Her work is supported by the automotive industry, software companies, state agencies, and the U.S. Navy. Previously, she was a Research Scientist and Co-Director of the MIT Battery Consortium. Dr. Sahraei holds a Ph.D. from George Washington University. She has received multiple awards for her research and contributes extensively to conferences on battery safety and crashworthiness.

Comments are closed.