PRE-RECORDED WEBINARS

Browse our library of ‘On Demand’ webinars (several free / some paid). Register and get immediate access to rich educational content.

  • (FREE) TORAY & VIRTUAL VEHICLE: Thermal Runaway Testing and Cause Analysis of an Automotive Li-Ion Cell

    Wednesday, May 19, 2021 | 10:00 A.M. EDT USA

    Part 1 focuses on the safety tests with large lithium-ion cells. We explain our test method and equipment to trigger and characterize a thermal runaway (TR). Then we present a case study with a large pouch cell which is brought into TR by over-temperature. We discuss the temperature curves, the voltage/resistance curves, gas releases and gas compositions.

    Part 2 covers composition analysis of large lithium-ion cells to interpret what happened during high temperature test. We also conduct thermal stability analysis of charged electrode to know the temperature when exothermic decomposition and oxygen release from cathode start. From that information, we can obtain key parameters to control thermal runaway from material design point of view.

    This webinar will focus on the following key topics:

    • Methods for safety tests of large lithium-ion cells
    • Thermal runaway of a large pouch cell caused by over-temperature
    • Detailed analysis of the gas, which is released during thermal runaway
    • Composition analysis of large scale lithium-ion cells
    • Thermal stability of charged electrode

    A PDF copy of the presentation will be sent to all attendees after the event.

    Presenters
    Yasuhito Aoki – Researcher at Toray Research Center
    Christiane Essl – Researcher at Virtual Vehicle Research GmbH
    Andrey Golubkov – Researcher at Virtual Vehicle Research GmbH

    Yasuhito Aoki is a researcher at Toray Research Center. He has been working on material analysis of Lithium ion battery using various instrumental analysis (mainly, Raman, FT-IR spectroscopy).

    Christiane Essl is a researcher at the Virtual Vehicle Research GmbH and an external PhD student at AUDI AG. She works on Battery Safety with the focus on vent gas analysis and early battery failure detection.

    Andrey Golubkov is a researcher at Virtual Vehicle Research GmbH. He has been working on thermal runaway testing of automitive Li-ion cells for 10 years.

    Toray Research Center and Virtual Vehicle Research GmbH are proud sponsors of this event.

    Register Now

  • (FREE) VOLTAIQ: Enterprise Battery Intelligence for Mobility Electrification

    Wednesday, May 26, 2021 | 10:00 A.M. EDT USA

    Electrification is the largest disruption to the transportation industry in its 125-year history – Enterprise Battery Intelligence software is key to the future of EV companies.

    With over 160,000 EV battery-related recalls in Q4 2020 alone, EV companies are investing billions of dollars in the facilities, teams and infrastructure needed to gain a deeper understanding of their batteries and how batteries impact their business. Developing, manufacturing and operating high-quality battery-powered products requires a deep understanding of battery behavior in real-world application settings. To do this well, EV companies must marshal mountains of data spanning the test lab, production line and vehicles operating in the field.

    This webinar will focus on the following key topics:

    • Enterprise Battery Intelligence software is key to your company’s future
    • Batteries can add tremendous value—or incur serious costs
    • A deep and holistic understanding of batteries is required to innovate, qualify new batteries and materials, ensure on-time product launches, reduce risk, determine resale/second-life value, increase ROI, among other business critical issues

    A PDF copy of the presentation will be sent to all attendees after the event.

    Presenter
    Dr. Tal Sholklapper – CEO at Voltaiq

    Dr. Tal Sholklapper is a co-founder of Voltaiq and serves as the company’s Chief Executive Officer. Before co-founding Voltaiq, Dr. Sholklapper was the lead engineer on a DOE ARPA-E funded project at the CUNY Energy Institute, developing an ultra-low-cost grid-scale battery. Prior to his work at CUNY, Tal co-founded Point Source Power, a low-cost fuel-cell startup based on technology he developed while at Lawrence Berkeley National Laboratory (LBNL) and UC Berkeley. Dr. Sholklapper has a BS, MS and PhD in Materials Science and Engineering from UC Berkeley.

    Voltaiq is a proud sponsor of this event.

    Register Now

  • FENWICK & B-SCIENCE.NET: IP Landscape, Strategies & Protection for Li-Ion Battery Solid-State Electrolytes and Silicon-Based Anodes

    Wednesday, June 09, 2021 | 10:00 A.M. EDT USA

    The audience will learn about recent key inventions in the areas of solid electrolytes and silicon anodes for Li-ion batteries that constitute the state of the art. Exemplified by a look at two new-comers (startups) and two incumbents, attendees will further learn about how to approach IP strategy & protection for their R&D programs.

    This webinar will focus on the following key topics:

    • IP landscape, strategies & protection
    • Solid-state electrolytes for Li-ion batteries
    • Silicon-based anodes

    A PDF copy of the presentation will be sent to all attendees after the event.

    Presenters
    Howard Lim – Associate Attorney, Fenwick & West LLP
    Pirmin Ulmann – Co-Founder & CEO, B-Science.net

    Howard represents technology-based clients in patent litigation matters and postgrant proceedings, such as inter partes reviews. He has technical experience in the area of lithium-ion batteries, electric vehicles, semiconductors, semiconductor manufacturing equipment, and LCD and OLED display technologies. Prior to becoming a lawyer, Howard had a substantial career in the lithium-ion battery industry working for Panasonic and Sanyo Electric Company developing new products in the areas of electric vehicle and energy storage technologies.

    Pirmin is co-founder and CEO of b-science.net, a battery innovation & patent monitoring service that is based on a novel machine learning approach. He obtained a diploma in chemistry from ETH Zurich (Switzerland) in 2004 and a PhD from Northwestern University (USA) in 2009. Thereafter, he was a JSPS Foreign Fellow at the University of Tokyo (Japan). From 2010 to 2016, while working at a major battery materials manufacturer in Switzerland, he was a coinventor of 7 patent families related to lithium-ion batteries. He holds the credential Stanford Certified Project Manager (SCPM) and has co-authored scientific publications with more than 1,600 citations.

    Register Now

  • PURDUE UNIVERSITY: Effects of Partial Nail Penetration on Li-ion Pouch Cell Operation

    Wednesday, July 07, 2021 | 10:00 A.M. EDT USA

    While many technological advancements have recently been made to ensure Li-ion batteries operate safely during normal cycling, many hazards exist when it comes to operation in abusive environments. Physical damage to batteries can lead to decreased performance and increased operating temperatures. This often causes thermal runaway, which in severe cases can lead to combustion and possibly explosion. In order to design cells in a way that mitigates these dangerous outcomes, it is important to understand what happens when a battery experiences physical abuse and continues to operate. This work focuses on the operational effects and indications for cells that operate in abusive environments where physical damage can be a concern.

    This webinar will focus on the following key topics:

    • Dynamic impact testing on Li-ion pouch cells
    • Operational indications of cell damage
    • Quantifying accelerated capacity fade due to physical damage
    • Effect of increased operating temperature on coulombic efficiency
    • Incremental capacity analysis for investigation into aging mechanisms

    A PDF copy of the presentation will be sent to all attendees after the event.

    Presenter
    Casey Jones – Ph.D. Candidate at Purdue University

    Casey Jones is a PhD student in the School of Aeronautics and Astronautics at Purdue University, where he works in the Interfacial Multiphysics Laboratory for Dr. Vikas Tomar. His research focuses on destructive testing of Li-ion batteries and the characterization of the effects on cell operation and is funded by the Office of Naval Research. Prior to studying at Purdue he served in the US Navy as a nuclear electronics technician aboard a fast-attack submarine based in Pearl Harbor, and received his BS in Mechanical Engineering from the University of Hawai’i at Manoa.

    Register Now