PRE-RECORDED WEBINARS

Browse our library of ‘On Demand’ webinars (several free / some paid). Register and get immediate access to rich educational content.

  • ABEE: Battery Modeling – Electrical and Thermal Models

    Wednesday, December 09, 2020 | 10:00 A.M. EST USA

    Energy storage systems are widely used in many applications where the integration of such systems requires a proper design and sizing. To ensure a reliable design and operation of these systems for the above-mentioned applications, a system management including battery management and thermal management is indispensable. Such kind of system-level supervisors are based on efficient modeling approaches that include electro-thermal models. Electro-thermal model includes different models with different precision, where the higher model accuracy requires a higher computational effort and cost. In this webinar, different modeling methods based on the latest findings are explained and reviewed.

    This webinar will focus on the following key topics:

    • Battery thermal solutions: existing systems and trends
    • Electrical behavior modeling
    • Thermal behavior modeling
    • 1D thermal model
    • 3D thermal model

    A PDF copy of the presentation will be sent to all attendees after the event.

    Presenter
    Aymen Souissi – Thermal Management Expert at Avesta Battery & Energy Engineering (ABEE)

    Aymen Souissi is a thermal Management Expert at Avesta Battery & Energy Engineering (ABEE), where he is working on different European projects on battery modeling and thermal management. Aymen is a mechanical engineer with a master’s degree in the fields of thermo-fluid dynamics and automotive technology from the University of Stuttgart in Germany. Prior to joining ABEE, he worked as thermal management engineer on different industrial projects at Bertrandt AG, where he was deeply involved in the development of battery systems.

    Register Now

  • (FREE) NUVATION ENERGY: Course 3 of 3 – Battery State of Health in Energy Storage Systems

    Wednesday, December 16, 2020 | 01:00 P.M. EST USA

    State of Health (SOH) is a widely used and often misunderstood term within the energy storage industry. What does it mean to say that a battery is at 90% SOH? How does battery SOH impact the performance of an energy storage system used for a particular application? Stefan Janhunen, Principal Software Architect at Nuvation Energy, will explore common industry definitions and misconceptions surrounding State of Health and will take a deeper dive into the fundamental metrics of battery health that impact overall energy storage system performance.

    This webinar will focus on the following key topics:

    • What is State of Health and how is it defined?
    • The most common metrics used to measure battery performance and health
    • The effects of battery degradation on energy storage system performance
    • Moving towards an energy storage system perspective on State of Health

    A PDF copy of the presentation will be sent to all attendees after the event.

    Presenter
    Stefan Janhunen – Principal Software Architect at Nuvation Energy

    Stefan Janhunen is a Principal Software Architect at Nuvation Energy where he helps solve challenging energy storage problems using advanced software. Lately he has been working mostly on control system architecture, estimation algorithms, simulation tools, and communication protocol challenges. He has developed numerous software products running on systems ranging from tiny embedded microcontrollers up to cloud compute platforms.

    Nuvation Energy is a proud sponsor of this event.

    Register Now

  • VOLTA: Next-Level Planning – Using Machine Learning To Improve EV Charging Network Buildout

    Wednesday, January 13, 2021 | 10:00 A.M. EST USA

    At Volta, our mission is to drive sustainability forward and we created a tool to help you do just that. Praveen Mandal introduces the Network Planning Tool (NPT), a machine-learning technology to predict electric vehicle adoption and demand, and plan charging infrastructure accordingly. NPT allows utilities, municipalities, and other related partners to optimize their decision-making process and reshape their transportation infrastructure to capitalize on the booming electric vehicle segment.

    This webinar will focus on the following key topics:

    • An overview of the rapidly evolving electrification industry
    • How Volta is leveraging machine learning technology to differentiate the scope of their services
    • Introduce NPT— a technology developed by Volta to predict and plan for electric vehicle adoption and demand
    • An in-depth explanation of the NPT’s far-reaching capabilities
    • Failure Mitigation and suppression

    A PDF copy of the presentation will be sent to all attendees after the event.

    Presenter
    Praveen K. Mandal – Chief Technology Officer, Volta Charging

    Praveen Mandal is a former engineer turned serial entrepreneur who jump-started the electric vehicle charging industry through the co-founding of ChargePoint in 2007, where he also served as its President. He is the recognized inventor of the “networked charging stations” concept, a pioneering idea that helped drive the adoption of charging stations by all industry stakeholders. Mandal serves as the CTO of Volta Charging, is the Co-Founder of 2predict, a team of data scientists providing advanced machine learning solutions for innovative companies and an MIT Connection Science Fellow.

    Register Now

  • PSU: Electrolyte Flow Control to Reduce Dendrite and SEI Growth in Lithium Metal Batteries

    Wednesday, March 17, 2020 | 10:00 A.M. EDT USA

    Dendrite growth in lithium metal batteries often leads to accelerated failure. SEI growth, breakage under excessive stress around dendrite tips, and re-growth on freshly exposed Li-surfaces leads to rapid capacity deterioration. Till date, a tough, mechanically stable SEI has been thought of as a necessity to prevent further SEI growth and to suppress dendrites. In this presentation, we will demonstrate that electrolyte flow can possibly eliminate dendrite growth, and also reduce SEI growth significantly, thus increasing stability and coulombic efficiency. The required electrolyte flow rates are low enough to be practically achieved by microfluidic pumping techniques.

    This webinar will focus on the following key topics:

    • Creeping normal electrolyte flow can eliminate dendrite growth
    • Creeping normal electrolyte flow increases the columbic efficiency and reduces SEI growth
    • Creeping parallel electrolyte flow significantly reduces dendrite growth
    • A mechanically stable tough SEI layer is not a necessity for stable dendrite free electroplating
    • Required flow rates may be achieved practically

    A PDF copy of the presentation will be sent to all attendees after the event.

    Presenter
    Mihir Parekh – PhD Candidate, Penn State University

    Mihir got his Bachelor and Master of Technology degrees (B. Tech and M. Tech) in Energy Science and Engineering from Department of Energy Science and Engineering at IIT Bombay, India. Currently he is a PhD candidate in Mechanical Engineering at Penn State University in Dr. Christopher Rahn’s group. He is studying the effect of electrolyte flow on dendrite and SEI growth in lithium metal batteries. During his undergrad, he has worked on Vanadium Redox flow batteries, and his Master’s thesis was on designing a heat exchanger for cooling a nuclear reactor spent fuel pool.

    Register Now