
Energy Storage RTE Tutorial Course 3/3: Total Battery System RTE – Ranking and Comparison of Different Battery Chemistries
RTE impacts of HVAC/Ventilation and Inverters will be described. Batteries generate heat, and this must be dissipated by system cooling and/or taken out of the system. Heat generated can be calculated by looking at IR heating and that generated (net) by exothermic reactions. Examples will include LFP, Li-NMC, Lead Acid and Nickel batteries, both when they are fresh, as well as at their end of useful life. The overall ancillary equipment energy usage will be listed for these systems, and a % RTE loss will be calculated for both nominal rate and high rate applications. Commentary will be provided for other systems. RTE will be summarized and ranked for most energy storage battery chemistries including ZA, NaS, LiS, Saltwater, Liquid Metal, Zinc Bromine and Fuel Cells.
This webinar will focus on the following key topics:
• RTE impacts of Inverters and HVAC
• RTE impacts for ancillary equipment for different systems
• RTE numbers for most battery systems being considered for energy storage
Presenter
Dr. Halle Cheeseman – Founder/President at Energy Blues LLC
Dr. Halle Cheeseman earned a PhD in Electrochemistry & Corrosion from the University of Nottingham in UK, graduating in 1985. She has held several executive positions in the battery industry over the past 32 years, including Sr. VP of R&D at Spectrum Brands and VP of R&D at Exide Technologies. Her specific battery experience includes Lithium Ion, Zinc Air, Nickel Metal Hydride, Nickel Iron, Alkaline and Lead Acid, focusing on Consumer, Industrial, Automotive & Renewable Energy applications. In July 2017, Dr. Cheeseman founded Energy Blues LLC, an energy storage consulting cooperative comprising 20+ subject matter experts.
Buy Now

Recycling of Lithium Ion Batteries From Electric Vehicles
The recycling of lithium-ion batteries – from EVs and others – will be discussed in this webinar.
Recently, the pilot plant of project LithoRec II could prove that a newly developed combination of process steps enables the recovery of a mass fraction of 75 % and more on a material recycling basis from lithium-ion batteries. This is supposed to be much better than state of the art. Combining different process steps like discharging, dismantling, shredding, sifting and air-jet separation the project partners were able to achieve their goal: proving that lithium-ion batteries can be recycled better. One interesting process dealing with the electrolyte came in a black box (which was actually white) and this was because of another ongoing patenting process of Lion Engineering. A modified and simplified process works to directly recycle scraps from the production of lithium-ion batteries – in order to protect both: the environment and the stakeholder’s money.
This webinar will focus on the following key topics:
• Recycling of Lithium Ion Batteries
• Recycling Yields and how to regain 75% and more – on a material recycling basis
• Direct Recycling of LIB-Production Scraps
Presenter
Christian Hanisch – CEO at Lion Engineering
Christian studied Process Engineering at TU Braunschweig (Germany) and has worked in the research project LithoRec and designed LithoRec II at the Institute for Particle Technology / TU Braunschweig on the topic of Recycling of Lithium Ion Batteries. He developed and patented new recycling processes and led the project to the realization of a pilot plant. Recognizing the highest interest of industrial partners in this topic he co-founded the spin-off Lion Engineering GmbH with fellow PhD students and Professor Arno Kwade in 2011. Beginning in 2016, Christian started to focus full-time on being CEO of Lion Engineering.
Buy Now

Preventing Thermal Runaway in Energy Storage Systems (ESS)
From air transportation to electric vehicles and most recently “Hover Boards”, our industry is painfully aware of the over-discharge malfunctions associated with high-energy lithium-ion batteries, yet according to recent studies, nearly 70% of all Energy Storage Systems currently deployed are lithium-ion. Avoiding the pitfalls of utilizing greater energy density in larger installations is what will be discussed. Michelle will walk through the recent innovations from materials and process tracking in battery manufacturing to comprehensive control of cells in a fully deployed system. Incorporating lessons learned from recent failure investigations by the NTSB and FAA as well as new DoE mandates, Michelle will discuss how to achieve and in some areas surpass the new emerging safety certifications for a multi-megawatt energy storage system.
This webinar will focus on the following key topics:
• Making batteries safe or making safe batteries? (control & mitigation)
• Cell manufacture tracking, certification and response
– NTSB & DoE analysis and current situation
• Incorporating advanced battery management systems (BMS)
– Active cell dynamic balancing
– Cell replacement (hot-swapping)
– System reconfiguration
– Energy density scalability
Presenter
Michelle Klassen – VP of Business Development at Pathion, Inc.
Michelle Klassen is VP of Business Development for PATHION Inc. which manufactures high-performance, safe, and reliable Energy Storage Systems (ESS) for commercial markets ranging from 86 kilowatt-hours in stand-alone systems to over 1 megawatt-hour in containerized units. Prior to PATHION, as Vice President at ZeroBase Energy, she led the design and implementation of power systems and micro-grids for customers, including the US Department of Defense, Kenya Ministry of Energy and the L.A. Department of Water and Power.
Buy Now

Battery Selection Tutorial Course 3/3: Integrating Your Battery Into Your Product – Designing for Worst-Case Scenarios
The last part in Exponent’s three-part series, this webinar will focus on the finished product from the viewpoint of the battery. How can you best protect your battery within your device? Is your battery going to be user-replaceable? If you’re creating multi-cell packs, how should they be separated from (yet still connected to) each other? Should a thermal event occur, how can you prevent that from cascading through the whole pack? This webinar will help to answer many of those questions, and discuss design questions to help safeguard your battery pack throughout its entire lifecycle.
This webinar will focus on the following key topics:
• Creating multi-cell packs
• Containing thermal runaway events
Presenter
Exponent – a multidisciplinary engineering and scientific consulting firm with significant experience in various aspects of battery design, safety testing and failure analysis.
Buy Now