
Avoid Battery Explosions and Fires – With Right Data and Better Designs
Modern Li Ion batteries contain hazardous chemicals and heat up during use – this combination always has the potential to cause fires and explosions. This presentation will focus on improving the understanding of how such incidents occur, what can be done to avoid them and how the risk can be minimized during early stage design.
The solution lies in knowledge of the heat generation rate during normal use, and information about safe boundaries such as temperature, discharge rate & overcharge in realistic situations that represent actual conditions of use. Data from commercial batteries of different types, including videos of batteries undergoing thermal runaway, will be used to illustrate these points.
A relatively new technique will also be discussed with data, which allows total heat output during discharge to be measured on-line and this can be used both for design and battery modelling. Examples of the data will be provided.
This webinar will focus on the following key topics:
• Why battery fires and explosions occur
• How to design safer batteries through understanding of heat generation
• Video evidence of batteries under explosive conditions
• How better thermal management systems can be designed – based on heat measurement from isothermal calorimetry
• Laboratory instruments suitable for testing and data generation
Presenter
Dr. Jasbir Singh – Managing Director at Hazard Evaluation Laboratory
Jasbir is a chemical engineer specializing in thermal hazards and calorimetry, traditionally for the chemical industry but now increasingly involved in battery safety, especially Li-ion EV and related types.
A graduate of Imperial College (London), where he undertook PhD into combustion and explosions, his experience includes many years in process design for the chemical and petrochemical industries. He is currently developing test methods and instruments for use in design of battery thermal management systems.
Buy Now

Accelerating Launch of New Battery Technologies by Expediting Samples Through Collaborative Partnerships
Polaris is a processing lab that accelerates new lithium ion battery developments resulting in faster delivery of samples. It provides processing services to accelerate the optimization of recipes for battery developers. Using its services, customers can avoid delays in launching products due to internal funding and staffing constraints.
Services include anode and cathode electrode mix and coat trials, pouch stack cell assemblies, cell and material analytical testing services, business advisory services, and a link to high volume production.
Two major roadblocks facing battery technology companies are addressed: 1) Startups lack staffing, process knowledge, funding, and equipment to develop samples, and 2) Commercialization of new battery technologies is capital intensive and takes long time to pass quality standards
This webinar will focus on the following key topics:
• Significant new material inventions in lithium ion and other advanced battery chemistries in the US
• Two primary issues or “gaps” in getting these technologies to the market
– generating samples for investors, customers and internal engineering evaluation and optimization
– building a battery factory and gaining product and quality system approval (a huge undertaking)
• Polaris Battery Labs Capability Overview for samples and commercialization
• Partner Profile; Carestream Heath as a contract coating partner to reduce time-to-market and risks
Presenter
Doug Morris – CEO – Polaris Battery Labs, LLC
Doug has over 30 years experience in the telecommunications, components, battery, and energy storage industries. Prior to working at Polaris Labs he was VP of Operations at Enevate. Doug has also held various executive, management, and engineering positions over his 21 year career with Motorola where he was VP and Director of Engineering, Quality, and Supply Chain Management for the Energy Systems Group. Doug was also a founder of Motorola’s Product Testing Services business.
Buy Now

Battery Analytics Tutorial Course 1/3: Battery Analytics and the Role of the BMS
This one-hour course will explore how various energy storage industry experts define the term “battery analytics.” It will also examine how the battery management system (BMS) is used to control the battery and provide real-time performance reporting, the lowest level of battery analytics.
This webinar will focus on the following key topics:
• The different types of battery analytics
• How a BMS works and why it is the most basic component of any battery analytics platform
• Real-time performance algorithms as the lowest level of analytics
Presenter
Michael Worry – CEO at Nuvation Energy
Michael Worry founded Nuvation in 1997 and has grown the company over 21 years into a thriving electronic products and engineering services firm with offices in Sunnyvale, California and Waterloo, Ontario Canada. He is the CEO of Nuvation Energy, a provider of battery management systems and engineering services for large-scale energy storage systems.
Buy Now

Electrochemical Impedance Spectroscopy and Its Application to Battery Analysis
Electrochemical Impedance Spectroscopy (EIS) is a well-established experimental technique that has applications in coatings, corrosion, sensors, electrochemical double layer capacitors, batteries among others. The power of EIS partly comes from its ability to access a very wide range of frequencies (typically from MHz to μHz). For batteries, parameters such as the internal resistance, electrode surface capacitance and leakage are accessible at different frequencies across the spectrum. This allows EIS to gather all the relevant information with a single measurement. In this webinar, we will briefly introduce EIS and cover its application to batteries. We will talk about how to analyze typical data and how to gather the relevant information. We will further talk about available instrumentation and their limitations.
This webinar will focus on the following key topics:
• What is impedance spectroscopy?
• What can impedance spectroscopy do for Battery analysis?
• How can capacitance, internal resistance and leakage be determined using EIS?
• What are the instrumental requirements and limits?
Presenter
Chris Beasley – Gamry Instruments
Chris Beasley received a BS in Chemistry from Kutztown University in 2000 and got a PhD in electrochemistry from University of North Carolina at Chapel Hill in 2010. His doctoral dissertation was on using redox-active nanoparticles as supercapacitors. Chris joined Gamry Instruments in 2010.
Buy Now