Product Development

Showing 1–10 of 57 results

  • Placeholder

    BMS Tutorial Course 1/3: Optimal Design Approaches to Battery Racks, Packs and Modules

    There are several ways to reduce the cost of your battery stack design while maintaining high performance and reliability. Alex Ramji, Senior Hardware Designer at Nuvation Energy will present a variety of approaches for lowering the cost of battery control electronics through innovative module and rack design. He will share examples of module and stack configurations for different types of cells, and explain how they have been architected to meet target stack voltages, amperages, and ESS capacities.

    This webinar will focus on the following key topics:

    • The master/slave battery management system model
    • Reducing BMS hardware through module, tray and stack design
    • Battery stack solution examples
    • Management of multiple stacks in parallel

    Presenter
    Alex Ramji – Senior Hardware Designer at Nuvation Energy

    Alex Ramji manages Nuvation Energy’s Hardware Solutions team, a group that develops a range of battery management products for large-scale energy storage systems. He is the lead designer of integrated battery management solutions that simplify energy storage system development. He has designed stack-level battery management products, system-level control systems, and novel battery stack architectures. Alex brings a multidisciplinary skill set of both electrical and mechanical engineering to system design, and is a key contributor to Nuvation Energy’s megawatt-scale energy storage projects.

    Nuvation Energy is a proud sponsor of this event.

    Buy Now
  • Placeholder

    Solid-State Li-Ion Batteries – Key Technology Approaches & Time-to-Market

    Attendees will learn which solid-state batteries have been launched already into beachhead markets, and which technology barriers for now prevent deployment in mass EV applications. Risks & opportunities identified in IP portfolios by large battery & automotive manufacturers and key startups will be compared with go-to-market & technology readiness statements. Finally, we will explain why hybrid battery packs or cells based on both liquid and solid electrolytes could potentially accelerate the automotive adoption of solid-state batteries.

    This webinar will focus on the following key topics:

    • Solid-state Li-ion batteries
    • Key innovation approaches & global patent literature
    • Time-to-market with respect to key applications: electronics/IoT, medical implants, automotive/rolling stock, stationary energy storage
    • Examples of solid electrolyte, cathode & anode selection
    • Combination of solid electrolytes with liquid electrolytes at the pack or cell level

    Presenter
    Dr. Pirmin Ulmann – Co-Founder & CEO, B-Science.net

    Dr. Pirmin Ulmann is co-founder and CEO of b-science.net, an information service for the battery patent literature that is based on a supervised machine learning approach. Pirmin obtained a diploma in chemistry from ETH Zurich (Switzerland) in 2004 and a PhD from Northwestern University (USA) in 2009, followed by a postdoc at Tokyo University (Japan). From 2010 to 2016, while working at a major Li-ion battery materials manufacturer, he was a co-inventor of 7 patent families. He holds the credential Stanford Certified Project Manager and has co-authored scientific publications with more than 1,500 citations.

    Buy Now
  • Placeholder

    EIS for Energy Storage Tutorial Course 1/3 – Basics of Electrochemical Impedance Spectroscopy

    The theoretical principles of Electrochemical Impedance Spectroscopy (EIS) are given. Details on what is being measured and which information it gives on the studied system are also explained. Some elements will be given on how an EIS measurement is performed from an instrumental point of view. Finally, the requirements that EIS must fulfill are presented.

    This webinar will focus on the following key topics:

    • What is an EIS measurement?
    • Which information do we get from this measurement?
    • How is it performed?
    • Which requirements should it fulfill?

    Presenter
    Dr. Nicolas Murer – Product Manager and Applications Engineer at Bio-Logic SAS, France

    Nicolas Murer is an application and product manager at Bio-Logic Science Instruments. Bio-Logic designs and manufactures potentiostats/galvanostats, battery cyclers and scanning probe electrochemical workstations.

    He received his engineer diploma from Polytechnic Institute of Grenoble in electrochemistry and materials in 2003. He then received his Ph.D. at Université de Bourgogne in 2008. Prior to joining Bio-Logic in 2011, he was a post-doc at the Ohio State University, Columbus.

    Buy Now
  • Placeholder

    EIS for Energy Storage Tutorial Course 2/3 – How to Perform Good and Reliable EIS Measurements

    Electrochemical Impedance Spectroscopy (EIS) is a powerful technique, but it might be difficult to know which parameters to set as it really depends on the studied system. We give a few guidelines and tools needed to set the right amplitude, as well as other experimental parameters of interest that can increase the accuracy and the reliability of your measurement.

    A discussion will be given about when and whether to choose between potentio-controlled or galvano-controlled EIS.

    Finally, we will give recommendations on the conditions that the system under study should fulfill, especially time-variance, with some examples on the effect it has on impedance data and how to correct them.

    This webinar will focus on the following key topics:

    • How to choose the amplitude of the input signal?
    • How to choose between PEIS and GEIS?
    • What do I need to check on my system?

    Presenter
    Dr. Nicolas Murer – Product Manager and Applications Engineer at Bio-Logic SAS, France

    Nicolas Murer is an application and product manager at Bio-Logic Science Instruments. Bio-Logic designs and manufactures potentiostats/galvanostats, battery cyclers and scanning probe electrochemical workstations.

    He received his engineer diploma from Polytechnic Institute of Grenoble in electrochemistry and materials in 2003. He then received his Ph.D. at Université de Bourgogne in 2008. Prior to joining Bio-Logic in 2011, he was a post-doc at the Ohio State University, Columbus.

    Buy Now
  • Placeholder

    EIS for Energy Storage Tutorial Course 3/3 – Application Examples in Energy Storage Taken From The Literature

    This presentation will give some examples of applications of EIS to various types of energy storage – for example, intercalation batteries (LFP, LCO, NiCd, NiMH etc.), lead acid batteries, and redox flow batteries. The examples are taken from research literature. The review will not be exhaustive, but it will provide examples that are considered relevant. For each application, some elements of comparison between EIS and DC methods will be given.

    This webinar will focus on the following key topics:

    • Examples in insertion batteries
    • Examples in lead acid batteries
    • Examples in redox flow batteries
    • Examples in supercapacitors
    • Comparison with DC methods

    Presenter
    Dr. Nicolas Murer – Product Manager and Applications Engineer at Bio-Logic SAS, France

    Nicolas Murer is an application and product manager at Bio-Logic Science Instruments. Bio-Logic designs and manufactures potentiostats/galvanostats, battery cyclers and scanning probe electrochemical workstations.

    He received his engineer diploma from Polytechnic Institute of Grenoble in electrochemistry and materials in 2003. He then received his Ph.D. at Université de Bourgogne in 2008. Prior to joining Bio-Logic in 2011, he was a post-doc at the Ohio State University, Columbus.

    Buy Now
  • Placeholder

    All Solid-State Batteries and the Future of Energy Storage

    The development of all solid-state batteries (ASSBs) has seen tremendous progress in recent years. However, several barriers still need to be overcome before ASSBs can be commercialized. These obstacles include poor interfacial stability, scalability challenges as well as the difficulty to precisely diagnose problems within the cell. Additionally, efforts to develop sustainable recyclability in lithium ion batteries are still lacking. In this webinar, we discuss SSEs chemistries and its implications on interfacial stability. We also cover the current state-of-the-art characterization techniques and evaluate future ASSB prototyping strategies. Finally, we hope to discuss potential strategies toward a sustainable ASSB recycling model to address the growing lithium ion battery waste problem.

    This webinar will focus on the following key topics:

    • Overview of solid-state batteries and solid-state electrolyte research
    • Importance of interfacial stability – correlate chemical, electrochemical and mechanical-induced reactions
    • Challenges for diagnosis / characterization of buried interfaces and lithium dendrites
    • Scalable fabrication considerations of commercialized all-solid-state batteries
    • Sustainability – Battery recycling concerns of Cost, Efficiency and the Environment

    Presenters
    Dr. Y. Shirley Meng – Professor at University of California San Diego
    Darren Tan – Founder and CTO at Unigrid Pte. Ltd.

    Dr. Y. Shirley Meng holds the Zable Endowed Chair Professor in Energy Technologies and is professor in NanoEngineering at UC San Diego. Shirley is the principal investigator of the research group – Laboratory for Energy Storage and Conversion (LESC). She is the founding Director of Sustainable Power and Energy Center (SPEC).

    Darren Tan is a founder and CTO of Unigrid Pte. Ltd. He is also a Chemical Engineering PhD student working at UC San Diego with the LESC group.

    Buy Now
  • Placeholder

    Will Lithium-Sulfur Batteries be Part of the Future of Energy Storage?

    Lithium-sulfur batteries can displace lithium-ion by delivering higher specific energy at a lower cost. Presently, however, the superior energy performance fades rapidly due to instability issues of the electrodes and the electrolyte. Extensive research and considerable progress over the past ten years have solved the instability issue of the sulfur electrode to a large extent. However, the formidable challenges of the more difficult electrode, lithium metal, (safety and cyclability) are yet to be resolved. Therefore, Lithium-Sulfur battery research programs should have at their heart, stabilizing the lithium electrode, as addressing it is predicted to ensure a rapid transition to commercial level life-spans. After all, the highest specific energy can be achieved by battery chemistries that utilize lithium metal as the negative electrode.

    This webinar will focus on the following key topics:

    • What’s so good about sulfur?
    • Great capacity brings great stress!
    • Will we see the revolutionary return of Lithium metal?
    • Electrolyte challenges (we need too much of it but it’s heavy!)
    • Current status and future prospects

    Presenter
    Dr. Mahdokht Shaibani  – Research Fellow at Monash University

    Dr. Mahdokht Shaibani  has expertise in materials synthesis, engineering, and scale-up for next-generation energy storage systems including lithium-sulfur batteries, silicon anodes, flow batteries, supercapacitors, and lithium-ion capacitors. She has conducted research in developing expansion-tolerant architectures for high capacity electrodes such as sulfur and silicon, fabrication of separators, synthesis of graphene and carbon materials for supercapacitors, and exploring the use of lithium-sulfur batteries for more sustainable and clean transportation and grid storage. Mahdokht has a PhD in Mechanical Engineering, with a focus on energy storage from Monash University, Australia.

    Buy Now
  • Placeholder

    Battery Design Optimization Using Cell Cooling Coefficient

    Lithium-ion cells and battery packs are not designed to maximize the performance of thermal management systems. As a result, every cell in use is performing sub optimally, and is degrading needlessly fast. The root cause of the problem is the lack of information surrounding the thermal performance of lithium-ion cells. Cell Cooling Coefficients (CCCs) have been developed to quantify the cell thermal performance. They can immediately tell the user exactly how a cell will behave in a battery pack, vital information for the design of any thermal management system. They can also be used to inform redesign, both at the cell level and at the battery pack level.

    This webinar will focus on the following key topics:

    • Battery heat generation: why, and why is it complex
    • Thermal management in battery packs
    • The problems with battery design: energy density above all else
    • Cell Cooling Coefficient as a universal metric
    • Using the Cell Cooling Coefficient to evaluate battery design and propose beneficial redesigns

    Presenter
    Alastair Hales – Research Associate, Imperial College London

    Alastair earned a PhD in Mechanical Engineering from the University of Bristol in 2016. Prior to joining Imperial College London in 2018, Alastair worked for SUEZ Advanced Solutions UK, designing equipment closely linked to his PhD topic, and as a Research Associate at Queen Mary University of London. Alastair’s existing work is focused around the thermal management and thermal effects of lithium-ion cells. Alastair led the work introducing the Cell Cooling Coefficient as a universal metric to quantify battery thermal performance. He is now building upon this research to develop capability for cell design optimization.

    Buy Now
  • Placeholder

    Battery Analytics Tutorial Course 1/3: Battery Analytics and the Role of the BMS

    This one-hour course will explore how various energy storage industry experts define the term “battery analytics.” It will also examine how the battery management system (BMS) is used to control the battery and provide real-time performance reporting, the lowest level of battery analytics.

    This webinar will focus on the following key topics:

    • The different types of battery analytics
    • How a BMS works and why it is the most basic component of any battery analytics platform
    • Real-time performance algorithms as the lowest level of analytics

    Presenter
    Michael Worry – CEO at Nuvation Energy

    Michael Worry founded Nuvation in 1997 and has grown the company over 21 years into a thriving electronic products and engineering services firm with offices in Sunnyvale, California and Waterloo, Ontario Canada. He is the CEO of Nuvation Energy, a provider of battery management systems and engineering services for large-scale energy storage systems.

    Buy Now
  • Placeholder

    Battery Analytics Tutorial Course 2/3: Data Capture and Trend Reporting

    This one-hour webinar is Part 2 of a 3-part series. Battery management systems take large amounts of sensor data readings on a continual basis as part of their functionality. Battery analytics involves leveraging battery performance data for tasks such as identifying issues that can reduce battery life, flagging behavior that can negatively impact energy storage system performance, and predicting remaining cell and pack life.

    This webinar will focus on the following key topics:

    • Sensor data capture, aggregation and manipulation into performance reports
    • Real-life examples will be shared, where aggregated historical data was analyzed and anomalous behaviors were identified
    • Also shared will be the inspections and testing of the pack to identify the cause of the anomalous behavior, and the discovery and resolution of the problems that caused the anomalies

    Presenter
    Michael Worry – CEO at Nuvation Energy

    Michael Worry founded Nuvation in 1997 and has grown the company over 21 years into a thriving electronic products and engineering services firm with offices in Sunnyvale, California and Waterloo, Ontario Canada. He is the CEO of Nuvation Energy, a provider of battery management systems and engineering services for large-scale energy storage systems.

    Buy Now