Free

Showing 1–10 of 33 results

  • Placeholder

    Fundamentals of Electrochemical Impedance Spectroscopy and Application to Li-Ion Batteries

    Electrochemical Impedance Spectroscopy (EIS) is a high-information content technique that provides insight into complex systems. EIS has gained tremendous popularity since innovation with the line of Frequency Response Analyzers from Solartron Analytical – but remains intimidating to many users. Join this webinar to gain confidence in your understanding of the technique itself and its application to the Li-Ion battery activity chain. EIS is used to: 1.) study diffusion characteristics and SEI formation during material development, 2.) identify degradation modes, ESR, State-of-Charge during cell characterization, and 3.) rapid grade State-of-Health during modules evaluation.

    This webinar will focus on the following key topics:

    • Fundamentals of data acquisition and data analysis of EIS
    • How EIS theory is applied in practice by beginners and experts
    • The value of EIS as a tool in evaluation of Li-ion batteries
    • How AMETEK’s portfolio meets uniquely defined needs at different points of the value chain

    Presenter
    Rob Sides – Applications Architect at AMETEK

    Rob Sides presents here as part of AMETEK, a global enterprise supporting electrochemical research through its Princeton Applied Research and Solartron Analytical brands. He joined AMETEK after achieving his Ph.D. from University of Florida in 2005, where he authored several original research papers, presentations, invited reviews and book chapters on the fabrication and characterization of Li-ion battery electrodes using DC and EIS-based methods. At AMETEK, Rob has held several roles across different functional groups of Applications, Sales/Marketing and Product Management. His background provides a depth and breadth of experience to present both fundamentals and solutions to the most challenging problems.

    AMETEK is a proud sponsor of this event.

    Buy Now
  • Placeholder

    DER Tutorial Course 1/3: Energy Storage and DER Control Behind the Meter

    The implementation of distributed energy resources behind the meter has become increasingly commonplace for commercial, industrial, and even residential energy consumers. While energy security is often a key driver, it is demand charge management that provides the return on the infrastructure investment. DER aggregation and demand charge management technologies however, have not yet fully caught up with the relative maturity of the resources they control. Join John Chinnick, Principal Software Architect at Nuvation Energy for an examination of distributed energy resource management behind the meter, and how to integrate and manage DER assets for demand charge management.

    This webinar will focus on the following key topics:

    • Types and tiers of distributed energy resource management
    • Technical constraints and opportunities in asset management
    • Integrating energy resources for centralized control
    • A demand charge management implementation model

    Presenter
    John Chinnick – Principal Software Architect at Nuvation Energy

    John Chinnick is a Principal Software Architect at Nuvation Energy. His current role includes project management and engineering design for distributed energy resource (DER) control systems. He brings 28 years of product design experience to the energy storage industry, with a diverse skillset that includes embedded computing and industrial controls. His current projects include the deployment of automotive second life battery packs into containerized energy storage for grid firming, transmission and distribution upgrade deferral, and demand charge management.

    Nuvation Energy is a proud sponsor of this event.

    Buy Now
  • Placeholder

    DER Tutorial Course 2/3: Battery Warranty Tracking for Stationary Energy Storage

    In the energy storage industry, battery warranties are based on the combination of a utilization profile and the responsible management of batteries within specified tolerances. Nuvation Energy CEO Michael Worry will explore how energy storage system providers and users can track battery utilization to ensure adherence to warranty parameters, and to proactively identify and resolve performance deviations that can negatively impact warranty claim outcomes.

    This webinar will focus on the following key topics:

    • Creating the use-case specific battery warranty
    • Energy storage system design for battery life and cycle count targets
    • Battery warranty tracking technologies
    • Data capture vs. compliance reporting

    Presenter
    Michael Worry – CEO at Nuvation Energy

    Michael Worry founded Nuvation in 1997 and has grown the company into a thriving electronic products and engineering services firm with offices in Sunnyvale, California and Waterloo, Ontario Canada. He is the CEO and CTO of Nuvation Energy, a provider of battery management systems and engineering design solutions for large-scale energy storage. Michael is deeply involved in battery management and energy storage system design and can often be found working on energy storage system installations at client sites.

    Nuvation Energy is a proud sponsor of this event.

    Buy Now
  • Placeholder

    DER Tutorial Course 3/3: Battery State of Health in Energy Storage Systems

    State of Health (SOH) is a widely used and often misunderstood term within the energy storage industry. What does it mean to say that a battery is at 90% SOH? How does battery SOH impact the performance of an energy storage system used for a particular application? Stefan Janhunen, Principal Software Architect at Nuvation Energy, will explore common industry definitions and misconceptions surrounding State of Health and will take a deeper dive into the fundamental metrics of battery health that impact overall energy storage system performance.

    This webinar will focus on the following key topics:

    • What is State of Health and how is it defined?
    • The most common metrics used to measure battery performance and health
    • The effects of battery degradation on energy storage system performance
    • Moving towards an energy storage system perspective on State of Health

    Presenter
    Stefan Janhunen – Principal Software Architect at Nuvation Energy

    Stefan Janhunen is a Principal Software Architect at Nuvation Energy where he helps solve challenging energy storage problems using advanced software. Lately he has been working mostly on control system architecture, estimation algorithms, simulation tools, and communication protocol challenges. He has developed numerous software products running on systems ranging from tiny embedded microcontrollers up to cloud compute platforms.

    Nuvation Energy is a proud sponsor of this event.

    Buy Now
  • Placeholder

    International Compliance for Small Portable Li Ion Batteries in 2021

    Does the Li Ion battery requirement for different countries confuse you? We will focus on the international requirements applied to small format portable Li Ion batteries. This will be an in-depth review of countries with mandatory requirements as well as voluntary or customer driven requirements. Every country has some very specific items that make them unique and these differences can lead to delays and potential changes in design if not understood ahead of time. We will review these gotcha items for each country we review. Finally, we will take a look at what is on the horizon for changes to standards and requirements globally.

    This webinar will focus on the following key topics:

    • Definition of scope – portable, small format Li ion batteries
    • Shipping regulations overview
    • Mandatory requirements
    • Voluntary or other requirements
    • Upcoming changes

    Presenter

    Cindy Millsaps – CEO, Energy Assurance

    Beginning her career with Underwriters Laboratories (UL), Cindy worked in global regulatory approvals, quality systems management, and product safety and qualification testing. where she focused on information technology equipment, energy, and batteries. As CEO, Cindy uses her expertise to understand changes in battery testing standards while assisting design engineers in planning. Cindy has written industry trade publications with special attention to her interpretation of changes in industry standards and how they impact cell manufacturers and suppliers. In addition to advising her clients, she serves on Underwriters Laboratories Standards Technical Panel for UL 62133, UL 1642, and UL 2054. Cindy holds a Bachelor of Science Degree in Electrical Engineering from North Carolina State University. Energy Assurance is a proud sponsor of this event.

    Buy Now
  • Placeholder

    Characterizing Catalytic Inks for Fuel Cells

    Catalytic inks are key components when balancing cost, performance, and durability of proton exchange membrane fuel cells (PEMFC’s). Scaling up PEMFC production requires careful control of the ink to produce uniform electrode layers that use as little precious metal catalyst as possible. Particle size and dispersion critically impact the behavior of the ink and resulting performance of the electrode layers. X-ray diffraction, laser diffraction, dynamic light scattering, and X-ray fluorescence are characterization techniques with proven ability to scale-up in support of mass production that, when combined, provide a comprehensive overview of the particles in catalytic ink mixtures.

    This webinar will focus on the following key topics:

    • X-Ray Diffraction
    • Laser Diffraction
    • X-Ray Fluorescence
    • Dynamic Light Scattering

    These techniques each probe a different size regime and, when combined, provide a comprehensive overview of the particles in the catalytic ink mixture.

    Presenter

    Scott A Speakman – Principal Scientist at Malvern Panalytical

    Scott A Speakman obtained his Ph.D. studying fuel cell materials at Alfred University. He completed a post-doctoral appointment at Oak Ridge National Lab, splitting time between supporting the High Temperature Materials Lab user program and researching fuel cell materials in EERE and FE programs. Scott then managed the X-ray Shared Experimental Facility at MIT for 8 years before joining Malvern Panalytical as a principal scientist. Scott A Speakman is a Fellow of the International Center for Diffraction Data and recipient of a 2013 Infinite Mile Award for exceptional service to MIT.

    Malvern Panalytical is a proud sponsor of this event.

    Buy Now
  • Placeholder

    BMS Tutorial Course 1/3: Optimal Design Approaches to Battery Racks, Packs and Modules

    There are several ways to reduce the cost of your battery stack design while maintaining high performance and reliability. Alex Ramji, Senior Hardware Designer at Nuvation Energy will present a variety of approaches for lowering the cost of battery control electronics through innovative module and rack design. He will share examples of module and stack configurations for different types of cells, and explain how they have been architected to meet target stack voltages, amperages, and ESS capacities.

    This webinar will focus on the following key topics:

    • The master/slave battery management system model
    • Reducing BMS hardware through module, tray and stack design
    • Battery stack solution examples
    • Management of multiple stacks in parallel

    Presenter
    Alex Ramji – Senior Hardware Designer at Nuvation Energy

    Alex Ramji manages Nuvation Energy’s Hardware Solutions team, a group that develops a range of battery management products for large-scale energy storage systems. He is the lead designer of integrated battery management solutions that simplify energy storage system development. He has designed stack-level battery management products, system-level control systems, and novel battery stack architectures. Alex brings a multidisciplinary skill set of both electrical and mechanical engineering to system design, and is a key contributor to Nuvation Energy’s megawatt-scale energy storage projects.

    Nuvation Energy is a proud sponsor of this event.

    Buy Now
  • Placeholder

    BMS Tutorial Course 2/3: Battery Stack Design for UL 1973 Certification

    If you are developing a stationary energy storage system, chances are you have already heard of UL 1973 and UL 9540. Being certified to these important safety standards is quickly becoming the price of admission in the energy storage industry. When taking your battery stack design through the UL 1973 certification process, the level of effort is significantly impacted by the compliances and ratings of the individual components in your battery rack. Join Nate Wennyk, Senior Hardware Designer at Nuvation Energy, for an inside look at the development of UL 1973 Recognized battery stack solutions.

    This webinar will focus on the following key topics:

    • Understanding battery stack architecture
    • Impacts of component certifications on the UL 1973 LOE
    • Designing flexibility into a locked-down stack configuration
    • UL 1973 Recognition case studies and engineering war stories

    Presenter
    Nate Wennyk – Senior Hardware Designer at Nuvation Energy

    Nate Wennyk manages Nuvation Energy’s Device Hardware team, a group that develops battery management system hardware for small- and large-scale energy storage applications. His experience ranges from grid-tied residential, commercial and industrial (C&I) behind the meter platforms to front of the meter energy storage and specialty vehicle applications. Nate possesses extensive field experience and has been a key contributor to system integration and commissioning projects for storage systems across the United Sates as well as on remote islands. He is currently Senior Hardware Designer for Nuvation Energy’s next-generation BMS product research and development team.

    Nuvation Energy is a proud sponsor of this event.

    Buy Now
  • Placeholder

    BMS Tutorial Course 3/3: Gain More Visibility Into Your Energy Storage System

    Long-term ownership and management of an energy storage system requires high visibility into the batteries to enable problem identification and resolution, compare actual vs. predicted degradation curves, and plan for capacity augmentation. Real-time diagnostics and historical battery health data can be utilized to improve system reliability and reduce the total cost of ESS ownership. Join Nuvation Energy CEO Michael Worry for an examination of how battery data analytics can be retrieved from the BMS and utilized to optimize system maintenance and contribute to the long-term viability of the energy storage system.

    This webinar will focus on the following key topics:

    • Business impacts of low visibility into internal battery operation
    • Problems frequently encountered by operators in the field
    • “Cell to cloud” remote system diagnosis
    • Battery warranty tracking

    Presenter
    Michael Worry – CEO at Nuvation Energy

    Michael Worry founded Nuvation in 1997 and has grown the company into a thriving electronic products and engineering services firm with offices in Sunnyvale, California and Waterloo, Ontario Canada. He is the CEO and CTO of Nuvation Energy, a provider of battery management systems and engineering design solutions for large-scale energy storage. Michael has been a hands-on engineer throughout his career. He is deeply involved in battery management and energy storage system design and can often be found working on energy storage system installations at client sites.

    Nuvation Energy is a proud sponsor of this event.

    Buy Now
  • Placeholder

    Methods and Instrumentation for Testing Li-ion Batteries, Materials to Modules

    We will walk through different phases of research from material development, characterization of cells and stacks, and advanced diagnostics on modules for Electric Vehicles. Attendees will have the opportunity to listen to and speak with the innovators of the frequency response analyzer (Solatron Analytical) and the digital potentiostat (Princeton Applied Research).

    Features of instrumentation will be translated into benefits for users. Data from many different solutions will be presented; highlighted by the recently concluded UK-based consortium to rapidly grade the State-of-Health of NISSAN Leaf modules.

    This webinar will focus on the following key topics:

    • Electrochemical methods used to characterize Li-ion batteries:  materials, cells, stacks, and modules
    • Benefits of accuracy and resolution on performance tests of Energy Devices
    • Mapping of experiment techniques and test methods to instrument specifications
    • How AMETEK’s portfolio meets these similar but uniquely defined needs at different points of the value chain

    Presenter
    Rob Sides – Director, Marketing & Product Management at AMETEK

    Rob Sides presents here as part of AMETEK, a global enterprise supporting electrochemical research through its Princeton Applied Research and Solartron Analytical brands. He joined AMETEK after achieving his Ph.D. from University of Florida in 2005, where he authored several original research papers, presentations, invited reviews and book chapters on the fabrication and characterization of Li-ion battery electrodes using DC and EIS-based methods. At AMETEK Rob has held several roles across different functional groups of Applications, Sales/Marketing and Product Management. His background provides a depth and breadth of experience to present both fundamentals and solutions to the most challenging problems.

    AMETEK is a proud sponsor of this event.

    Buy Now