Free

Showing 1–10 of 11 results

  • Placeholder

    BIS Tutorial Course 1/3: Introducing Battery Intelligence Systems (BIS)

    While the industry is familiar with the battery and its BMS (battery management system), very few are aware of the critical need for a missing third layer, the Battery Intelligence System (BIS) needed to enable the leap in battery yield, energy density, and lifetime the industry is calling for.

    Battery Intelligence Systems are needed to leverage the latent value sitting in data that companies are collecting today, including but not limited to: data generated in battery factories in Asia, product OEMs around the globe, and ‘data lakes’ collecting data from systems in the field.

    Your organization already has the building blocks to enable BIS. In this webinar we’ll show you the benefits of unlocking the value of your battery data.

    This webinar will focus on the following key topics:

    • The need for Battery Intelligence
    • State of the industry: insufficient resources to meet aggressive electrification goals
    • State of data today: “Treating it like a mushroom and watching it grow”
    • Automation of standard analyses
    • Traceability with Battery Digital Twins

    Presenter
    Dr. Tal Sholklapper – CEO at Voltaiq

    Dr. Tal Sholklapper is the CEO of Voltaiq. Before co-founding Voltaiq, Dr. Sholklapper was the lead engineer on a DOE ARPA-E funded project at the CUNY Energy Institute, developing an ultra-low-cost grid-scale battery. Prior to his work at CUNY, Dr. Sholklapper co-founded Point Source Power, a low-cost fuel-cell startup based on technology he developed while at Lawrence Berkeley National Laboratory. Dr. Sholklapper has a BS in Physics and Applied Mathematics and an MS and PhD in Materials Science and Engineering from UC Berkeley, where he holds the honor of completing the fastest engineering PhD in two and a half years.

    Voltaiq is a proud sponsor of this event.

    Buy Now
  • Placeholder

    BIS Tutorial Course 2/3: Battery Intelligence in Research and Development (R&D)

    The development of new, improved battery systems is slowed by the long test times required to validate battery cycle life — three to six months for consumer electronics and multiple years for long-life applications such as transportation and energy storage.

    In this webinar, we’ll review how Battery Intelligence Systems (BIS) can enable accelerated development cycles and time to market. BIS can not only speed development cycles with automated background analytics; it can also unlock new insights with enhanced analytical techniques, helping you make better decisions faster.

    This webinar will focus on specific end-uses including fast-charge algorithm development, BMS algorithms and new materials development, and how BIS can accelerate optimization and new product introduction.

    This webinar will focus on the following key topics:

    • The state of the battery development ecosystem
    • The design of experiments (DoE) to optimize performance
    • Dramatic changes in workflow with Battery Intelligence System (BIS) Software
    • Enhanced analytics examples including differential capacity analysis (dQ/dV vs V) and on-line correlative analysis
    • BIS enabled faster development cycles and time to market

    Presenter
    Dr. Tal Sholklapper – CEO at Voltaiq

    Dr. Tal Sholklapper is the CEO of Voltaiq. Before co-founding Voltaiq, Dr. Sholklapper was the lead engineer on a DOE ARPA-E funded project at the CUNY Energy Institute, developing an ultra-low-cost grid-scale battery. Prior to his work at CUNY, Dr. Sholklapper co-founded Point Source Power, a low-cost fuel-cell startup based on technology he developed while at Lawrence Berkeley National Laboratory. Dr. Sholklapper has a BS in Physics and Applied Mathematics and an MS and PhD in Materials Science and Engineering from UC Berkeley, where he holds the honor of completing the fastest engineering PhD in two and a half years.

    Voltaiq is a proud sponsor of this event.

    Buy Now
  • Placeholder

    BIS Tutorial Course 3/3: Battery Intelligence in New Product Introduction (NPI) for Transportation and Consumer Electronics

    OEMs are faced with an ever growing list of challenges when designing batteries into their systems, from long qualification time, to increasingly complex systems and the lack of qualified battery engineers.

    In this webinar, we’ll review the battery and systems qualification process for transportation and consumer electronics, including specific reference performance tests such as hybrid pulse power characterization (HPPC), that are used for BMS development.

    We’ll then shift into how Battery Intelligence Systems (BIS) can both accelerate time to market for New Product Introduction (NPI), and can surface deeper insights about variability in batteries and packs to increase range, lower costs, and improve reliability.

    This webinar will focus on the following key topics:

    • The state of OEM new product introduction (NPI)
    • Battery and system qualification
    • BMS development and hybrid pulse power characterization (HPPC)
    • Ensuring time to market for NPI
    • Extending range and lifetime with component variability assessment

    Presenter
    Dr. Tal Sholklapper – CEO at Voltaiq

    Dr. Tal Sholklapper is the CEO of Voltaiq. Before co-founding Voltaiq, Dr. Sholklapper was the lead engineer on a DOE ARPA-E funded project at the CUNY Energy Institute, developing an ultra-low-cost grid-scale battery. Prior to his work at CUNY, Dr. Sholklapper co-founded Point Source Power, a low-cost fuel-cell startup based on technology he developed while at Lawrence Berkeley National Laboratory. Dr. Sholklapper has a BS in Physics and Applied Mathematics and an MS and PhD in Materials Science and Engineering from UC Berkeley, where he holds the honor of completing the fastest engineering PhD in two and a half years.

    Voltaiq is a proud sponsor of this event.

    Buy Now
  • Placeholder

    New Developments in Isothermal Microcalorimetry and ARC® Testing Methods

    This presentation describes two main types of calorimetric techniques which can be used to carry out performance and safety testing on batteries. These are isothermal calorimetry and adiabatic calorimetry.

    THT’s new Micro Battery Calorimeter is presented along with initial data from a prototype unit.  This device is focused on high sensitivity measurement which is required for coin and button cell samples which produce only milliwatts of heat during use. This is an example of an isothermal calorimeter system.

    The second half of the presentation covers battery testing methods for the ARC® adiabatic calorimeter system. The theoretical background of the test method is described and recommended practice for various types of testing are discussed.

    This webinar will focus on the following key topics:

    • Principles of isothermal calorimetry for batteries
    • Introduction to the Micro Battery Calorimeter and initial data
    • Theoretical background to ARC® testing
    • Recommended ARC® testing practices

    Presenter
    Danny Montgomery – Technical Performance Manager at THT

    Danny Montgomery has worked in Thermal Hazard Technology for 10 years. His current position is Technical Performance Manager. He manages THT’s test lab which has recently been expanded due to THT’s increasing cell testing workload.

    He joined the company after graduating from Southampton University with a master’s degree in physics.

    As well as managing the lab, Danny is involved with technical support, installation and training for THT’s calorimeter systems. He has provided training for battery and automotive companies around the world such as Panasonic, LG, Samsung, BMW and General Motors. Danny is based in THT’s head office in Bletchley, UK.

    THT is a proud sponsor of this event.

    Buy Now
  • Placeholder

    Measurements That Accelerate Battery Development

    FREE Webinar – Metrohm is a proud sponsor of this event.

    Material damage and defects in separators and collectors can ultimately cause thermal runaway and lead to failure of the cell. Improved design of these key components is vital for safer batteries, and proper testing early in the development process ensures high performance.

    In this webinar, battery expert Brian Morin, CEO of Soteria Battery Innovation Group, will reveal new architectures that lead to safer cell performance. Reza Fathi, Product Specialist from Metrohm Autolab, will discuss the use of electrochemical impedance spectroscopy (EIS) for Li-ion battery analysis. Using case studies and real-world examples, they will also describe why performance-predictive electrical and electrochemical measurements are necessary to accelerate the development process.

    This webinar will focus on the following key topics:

    • How to design separators and current collectors to deter thermal runaway
    • How to utilize bench-top measurements as screening tools during early cell development to reduce time and expense
    • How temperature-controlled impedance measurements lead to advanced materials analysis
    • Electrochemical techniques to test and evaluate Li-ion cells

    Presenters
    Dr. Brian Morin – Co-Founder & CEO at Soteria Battery Innovation Group
    Dr. Reza Fathi – Product Specialist at Metrohm Autolab

    Buy Now
  • Placeholder

    Advanced Techniques For Addressing Issues in Battery Safety and Performance Using Adiabatic Calorimetry

    FREE Webinar – THT is a proud sponsor of this event.

    Adiabatic calorimetry is a widely utilized technique within the field of battery safety research. The method has been adapted from the chemical industry to address a significant range of safety and performance tests on battery components, cells and even modules.

    Although a number of different battery tests may be employed using the ARC, interpretation of results is not always straightforward. Some of the principles which apply to ARC chemical testing do not translate directly to battery testing due to the variable nature of samples.

    This presentation describes both the advantages and limitations of ARC testing on batteries and how the ARC test can be adapted to address different questions in battery research as well as quality control.

    This webinar will focus on the following key topics:

    • The principles of adiabatic calorimetry (ARC)
    • How calorimetry can be used in battery testing
    • What we learn from battery testing by calorimetry
    • Pressure measurement and gas collection during thermal runaway
    • Advanced testing techniques in adiabatic battery calorimetry

    Presenter
    Danny Montgomery – Technical Performance Manager at THT

    Danny Montgomery joined THT in 2009 after graduating from Southampton University with a master’s degree in physics. His current role as Technical Performance Manager involves running the calorimetry lab with involvement in technical aspects of THT’s instrumentation.

    Danny’s focus is primarily on lithium battery calorimetry; both adiabatic and isothermal. He oversees the use of calorimeters for customer sample testingas well as installing calorimeter systems and provided training and technical supportfor battery and automotive companies worldwide, such as Panasonic, BMW and Samsung. Danny works in THT’s UK office in Milton Keynes.

    Buy Now
  • Placeholder

    Maximizing Battery Performance and Reliability for Electric Vehicles and Energy Storage

    FREE Webinar – Voltaiq is a proud sponsor of this event.

    As automakers and utilities transition away from non-renewable energy sources, batteries have become essential for efficient energy storage and delivery. Companies are working intensely to deliver higher capacity and more robust batteries to power their products, but ad hoc development processes cannot keep pace with the volume of battery data being generated. In addition, understaffed battery  development teams are unable to leverage their data to accelerate development or improve production and manufacturing.

    In this webinar, we will outline the challenges that the battery industry is facing and how big data analytics can virtually eliminate manual data management and provide powerful capabilities that deliver rapid insights into a battery’s design that dramatically accelerate the development process and results in products with greater performance and reliability.

    This webinar will focus on the following key topics:

    • Recognizing the challenges and bottlenecks in battery development today
    • Automating the battery data collection, data cleaning, and data management process
    • Identifying design issues earlier with predictive analytics
    • Leveraging metadata to understand the impact of materials, processes and test conditions

    Presenter
    Dr. Tal Sholklapper – Co-Founder and CEO at Voltaiq

    Dr. Tal Sholklapper is a co-founder of Voltaiq and serves as the company’s Chief Executive Officer. Before co-founding Voltaiq, Dr. Sholklapper was the lead engineer on a DOE ARPA-E funded project at the CUNY Energy Institute, developing an ultra-low-cost grid-scale battery. Prior to his work at CUNY, Tal co-founded Point Source Power, a low-cost fuel-cell startup based on technology he developed while at Lawrence Berkeley National Laboratory (LBNL) and UC Berkeley. Dr. Sholklapper has a BS in Physics and Applied Mathematics and an MS and PhD in Materials Science and Engineering from UC Berkeley.

    Buy Now
  • Placeholder

    Battery Safety Assessment: From Cell to Pack Level

    FREE Webinar : Duration – 1 hour

    For fast and reliable battery pack development, a virtual assessment of battery safety via simulation is presented. The methodology, from single cell abuse testing up to battery pack simulation of crash and crush loads, is discussed. Cell tests that provide detailed understanding of the mechanical behavior of single Li-ion cells are used to improve battery stiffness and to optimize battery pack  design.

    This webinar will focus on the following key topics:

    • Method description: battery safety assessment from cell to pack level
    • Abuse cell tests
    • Abuse cell simulations
    • Crash and crush simulations at module and pack levels

    Presenter
    Jeremy Gaume – Project Manager, Analysis of Engineering and Technology Powertrain Systems at AVL GmbH

    Jeremy Gaume graduated from the University of Technology of Belfort-Montbeliard (U.T.B.M.), France, with a Master Diploma in thermo-mechanical system modelling and optimization. He has 10 years’ of experience in the automotive field. Before joining AVL, he worked at Magna Steyr for CAE crash (passive safety) assessment. After joining AVL, he was appointed as a Project Manager for Analysis of Engineering and Technology Powertrain Systems. Jeremy is an expert on crash/safety simulation for batteries.

    Buy Now
  • Placeholder

    Determination of Battery Safety and Performance Parameters Using Adiabatic and Isothermal Calorimetry

    FREE Webinar – Thermal Hazard Technology is a proud sponsor of this event.

    This presentation describes two main types of calorimetry which can be used to carry out safety and performance testing on batteries. Isothermal calorimeters allow for direct heat measurement on cells during use, while adiabatic calorimeters can measure heat released from batteries during thermal runaway.

    Calorimetry can serve as a quantitative scientific method for evaluation of battery safety but it requires appropriate instrumentation. The principles of operation of both types of calorimeters are described along with specific applications within the field of battery testing.

    A combination of both technics allows for detailed thermal characterization of lithium-ion and other rechargeable cells, and differences due to chemistry, cell design, cell age, state of charge and cell size can be evaluated.

    This webinar will focus on the following key topics:

    • The principles of adiabatic and isothermal calorimetry
    • How calorimetry can be used in battery testing
    • Parameters established by adiabatic safety testing
    • Parameters established by isothermal performance testing
    • Pressure measurement and gas collection

    Presenter
    Danny Montgomery – Technical Performance Manager at Thermal Hazard Technology

    Danny Montgomery has worked at Thermal Hazard Technology for 9 years. His current role is Technical Performance Manager; overseeing the lab and technical aspects of instrumentation manufactured by THT. He joined the company in 2009 after graduating from Southampton University with a master’s degree in physics.

    Danny’s focus is primarily on lithium battery calorimetry; both adiabatic and isothermal. He oversees the use of calorimeters for customer sample testing as well as installing calorimeter systems and provided training for battery and automotive companies worldwide, such as Panasonic, BMW and Samsung. Danny works in Thermal Hazard Technology’s UK office in Milton Keynes.

    Buy Now
  • Placeholder

    Lithium Ion Capacitors – Combining Energy with Power

    FREE Webinar – JSR Micro, Inc. is a proud sponsor of this event.

    Lithium Ion Capacitors (LIC) are hybrids of electric double-layer capacitors (EDLCs) and lithium ion batteries (LIB). Combining the reversible non-Faradaic cathode from an EDLC and the reversible Faradaic anode from an LIB results in an ultra or super capacitor with significantly increased energy density, improved float performance and low self-discharge rates. Avoiding the lithium metal oxide cathodes from LIB’s improves the inherent safety and eliminates Cobalt content, however still combines aspects of energy & power of both cell types. The Faradaic intercalation/deintercalation reactions at the anode are capable of generating a significant amount of charge, while the non-Faradaic electrostatic storage of the electrical energy formed at the interface of the electrode and the electrolyte, known as an electric double layer, results in fast charge and discharge capabilities for hundreds of thousands, if not millions of cycles.

    This webinar will focus on the following key topics:

    • What is an LIC? Technology Introduction
    • Key Benefits
    • Safety
    • EDLC vs LIC
    • Applications

    Presenter

    Jeff Myron – Energy Solutions Program Manager at JSR Micro, Inc.

    Since 2011 Jeff has been responsible for business development in North America of JSR group’s environmental energy products including, lithium ion capacitors (LIC) and aqueous battery binders. Jeff joined JSR in 2006 as a Technical Sales Specialist for advanced photoresists utilized in IC manufacturing. Immediately prior to JSR, Jeff worked at Molecular Imprints developing the commercial infrastructure for next generation nano imprint lithography templates. Prior to joining Molecular Imprints, he held various engineering, engineering management & product management positions at Motorola, DuPont Photomask & Brewer Science. Jeff earned a bachelor’s degree in chemistry from Illinois State University in 1990 and an MBA from Webster University in 2001.

    Buy Now