Beyond Li Ion

Showing all 6 results

  • Placeholder

    Solid-State Batteries – The Key Enabling Technology in Advanced Electric Vehicles

    The ‘EV Everywhere Grand Challenge’ has led to extensive research and development of battery technologies with high energy density. To date, state-of-the-art Li-ion batteries (SOA LIBs) based on alkali metal ion intercalation cathodes and anodes have been widely adopted in plug-in hybrid and niche high performance electric vehicles. However, concern with the ultimate limits of SOA LIBs related to their energy density, weight and safety suggests the need for alternatives over the long term. Solid-state batteries (SSBs) have been recognized as an ideal solution that can enable energy densities beyond those of SOA LIBs by utilizing Li metal anode and high voltage cathode, while delivering long cycle life and improved safety. As the key component of SSB, solid-state electrolyte (SSE) replaces the porous separator/ liquid electrolyte to act as a physical barrier and mechanically suppress the formation and penetration of Li dendrites. However, successful development and commercialization of SSBs requires fundamental research related to enhancing the SSE ionic conductivity, stabilizing the     electrolyte/ electrode interfaces, cell and pack manufacturing methods, development of battery management systems, and efficient battery pack designs. In this webinar, the practices and principles that have been proposed for dealing with core problems related to SSBs as well as future research avenues that will encourage the adoption of SSBs in real application will be discussed.

    This webinar will focus on the following key topics:

    • The microstructure role and SSE composition on the Li+ conduction behavior
    • Design and development of an effective electrode-electrolyte interface in SSBs
    • Mechanistic origins of Li dendrite growth in SSEs and approaches to mitigate the dendrite penetration
    • Manufacturing challenges related to mass production of SSBs

    Asma Sharafi – Research Engineer at Ford Motor Company

    Asma Sharafi is a Research Engineer working in Electrification Subsystem and Power Supply Department at Ford Motor Company. Prior to joining Ford, she completed her Ph.D. at the University of Michigan in Mechanical Engineering. Her primary focus is development of pioneering strategies to improve the durability and increase the energy density of batteries for their implementation in electric vehicles.

    Buy Now
  • Placeholder

    The Role of All-Solid-State Batteries for Grid Energy Storage

    All solid-state batteries (ASSBs) are widely believed to be a promising technology for next-generation energy storage. While Li-ASSBs are slated to serve the electric vehicles market, Na-ASSBs are a promising technology for electrical grid storage due to their lowered costs and longevity. Prevailing obstacles to commercialization include poor cathode interfacial stability, and the lack of a robust sodium anode, in addition to low areal capacities. In this webinar, we will discuss design strategies to enable stable interfaces, as well as utilize sodium alloy-based anodes to enable ASSBs with higher energy densities, longer cycle life, and longer calendar life.

    This webinar will focus on the following key topics:

    • State-of-the-art Na solid-state batteries and their role for grid energy storage applications
    • Low cost, novel solid electrolytes enabling long cycle life via interface stabilization
    • Na alloy-based anodes eliminating dendrite formation and enabling wide temperature operation
    • Processing considerations to achieve high areal capacities for high energy densities

    Darren H. S. Tan – Co-Founder at UNIGRID LLC
    Dr. Erik A. Wu – CTO at UNIGRID LLC

    Darren H. S. Tan is a Co-Founder of UNIGRID LLC, an energy storage company based on cutting edge ASSB technologies. He is a PhD candidate leading the ASSB research work at UC San Diego at the Sustainable Power and Energy Center (SPEC).

    Dr. Erik A. Wu is the Chief Technology Officer of UNIGRID LLC, where he leads the development of Na-ASSBs for large scale grid energy storage applications, and is a recent alumnus of the Laboratory of Energy Storage and Conversion at UC San Diego.

    Buy Now
  • Placeholder

    Solid-State Li-Ion Batteries – Key Technology Approaches & Time-to-Market

    Attendees will learn which solid-state batteries have been launched already into beachhead markets, and which technology barriers for now prevent deployment in mass EV applications. Risks & opportunities identified in IP portfolios by large battery & automotive manufacturers and key startups will be compared with go-to-market & technology readiness statements. Finally, we will explain why hybrid battery packs or cells based on both liquid and solid electrolytes could potentially accelerate the automotive adoption of solid-state batteries.

    This webinar will focus on the following key topics:

    • Solid-state Li-ion batteries
    • Key innovation approaches & global patent literature
    • Time-to-market with respect to key applications: electronics/IoT, medical implants, automotive/rolling stock, stationary energy storage
    • Examples of solid electrolyte, cathode & anode selection
    • Combination of solid electrolytes with liquid electrolytes at the pack or cell level

    Dr. Pirmin Ulmann – Co-Founder & CEO,

    Dr. Pirmin Ulmann is co-founder and CEO of, an information service for the battery patent literature that is based on a supervised machine learning approach. Pirmin obtained a diploma in chemistry from ETH Zurich (Switzerland) in 2004 and a PhD from Northwestern University (USA) in 2009, followed by a postdoc at Tokyo University (Japan). From 2010 to 2016, while working at a major Li-ion battery materials manufacturer, he was a co-inventor of 7 patent families. He holds the credential Stanford Certified Project Manager and has co-authored scientific publications with more than 1,500 citations.

    Buy Now
  • Placeholder

    All Solid-State Batteries and the Future of Energy Storage

    The development of all solid-state batteries (ASSBs) has seen tremendous progress in recent years. However, several barriers still need to be overcome before ASSBs can be commercialized. These obstacles include poor interfacial stability, scalability challenges as well as the difficulty to precisely diagnose problems within the cell. Additionally, efforts to develop sustainable recyclability in lithium ion batteries are still lacking. In this webinar, we discuss SSEs chemistries and its implications on interfacial stability. We also cover the current state-of-the-art characterization techniques and evaluate future ASSB prototyping strategies. Finally, we hope to discuss potential strategies toward a sustainable ASSB recycling model to address the growing lithium ion battery waste problem.

    This webinar will focus on the following key topics:

    • Overview of solid-state batteries and solid-state electrolyte research
    • Importance of interfacial stability – correlate chemical, electrochemical and mechanical-induced reactions
    • Challenges for diagnosis / characterization of buried interfaces and lithium dendrites
    • Scalable fabrication considerations of commercialized all-solid-state batteries
    • Sustainability – Battery recycling concerns of Cost, Efficiency and the Environment

    Dr. Y. Shirley Meng – Professor at University of California San Diego
    Darren Tan – Founder and CTO at Unigrid Pte. Ltd.

    Dr. Y. Shirley Meng holds the Zable Endowed Chair Professor in Energy Technologies and is professor in NanoEngineering at UC San Diego. Shirley is the principal investigator of the research group – Laboratory for Energy Storage and Conversion (LESC). She is the founding Director of Sustainable Power and Energy Center (SPEC).

    Darren Tan is a founder and CTO of Unigrid Pte. Ltd. He is also a Chemical Engineering PhD student working at UC San Diego with the LESC group.

    Buy Now
  • Placeholder

    Will Lithium-Sulfur Batteries be Part of the Future of Energy Storage?

    Lithium-sulfur batteries can displace lithium-ion by delivering higher specific energy at a lower cost. Presently, however, the superior energy performance fades rapidly due to instability issues of the electrodes and the electrolyte. Extensive research and considerable progress over the past ten years have solved the instability issue of the sulfur electrode to a large extent. However, the formidable challenges of the more difficult electrode, lithium metal, (safety and cyclability) are yet to be resolved. Therefore, Lithium-Sulfur battery research programs should have at their heart, stabilizing the lithium electrode, as addressing it is predicted to ensure a rapid transition to commercial level life-spans. After all, the highest specific energy can be achieved by battery chemistries that utilize lithium metal as the negative electrode.

    This webinar will focus on the following key topics:

    • What’s so good about sulfur?
    • Great capacity brings great stress!
    • Will we see the revolutionary return of Lithium metal?
    • Electrolyte challenges (we need too much of it but it’s heavy!)
    • Current status and future prospects

    Dr. Mahdokht Shaibani  – Research Fellow at Monash University

    Dr. Mahdokht Shaibani  has expertise in materials synthesis, engineering, and scale-up for next-generation energy storage systems including lithium-sulfur batteries, silicon anodes, flow batteries, supercapacitors, and lithium-ion capacitors. She has conducted research in developing expansion-tolerant architectures for high capacity electrodes such as sulfur and silicon, fabrication of separators, synthesis of graphene and carbon materials for supercapacitors, and exploring the use of lithium-sulfur batteries for more sustainable and clean transportation and grid storage. Mahdokht has a PhD in Mechanical Engineering, with a focus on energy storage from Monash University, Australia.

    Buy Now
  • Placeholder

    Electrolyte Flow Control to Reduce Dendrite and SEI Growth in Lithium Metal Batteries

    Dendrite growth in lithium metal batteries often leads to accelerated failure. SEI growth, breakage under excessive stress around dendrite tips, and re-growth on freshly exposed Li-surfaces leads to rapid capacity deterioration. Till date, a tough, mechanically stable SEI has been thought of as a necessity to prevent further SEI growth and to suppress dendrites. In this presentation, we will demonstrate that electrolyte flow can possibly eliminate dendrite growth, and also reduce SEI growth significantly, thus increasing stability and coulombic efficiency. The required electrolyte flow rates are low enough to be practically achieved by microfluidic pumping techniques.

    This webinar will focus on the following key topics:

    • Creeping normal electrolyte flow can eliminate dendrite growth
    • Creeping normal electrolyte flow increases the columbic efficiency and reduces SEI growth
    • Creeping parallel electrolyte flow significantly reduces dendrite growth
    • A mechanically stable tough SEI layer is not a necessity for stable dendrite free electroplating
    • Required flow rates may be achieved practically


    Mihir Parekh – PhD Candidate, Penn State University

    Mihir got his Bachelor and Master of Technology degrees (B. Tech and M. Tech) in Energy Science and Engineering from Department of Energy Science and Engineering at IIT Bombay, India. Currently he is a PhD candidate in Mechanical Engineering at Penn State University in Dr. Christopher Rahn’s group. He is studying the effect of electrolyte flow on dendrite and SEI growth in lithium metal batteries. During his undergrad, he has worked on Vanadium Redox flow batteries, and his Master’s thesis was on designing a heat exchanger for cooling a nuclear reactor spent fuel pool.

    Buy Now