Grid Storage

Showing 1–10 of 31 results

  • Placeholder

    BMS Tutorial Course 1/3: Optimal Design Approaches to Battery Racks, Packs and Modules

    There are several ways to reduce the cost of your battery stack design while maintaining high performance and reliability. Alex Ramji, Senior Hardware Designer at Nuvation Energy will present a variety of approaches for lowering the cost of battery control electronics through innovative module and rack design. He will share examples of module and stack configurations for different types of cells, and explain how they have been architected to meet target stack voltages, amperages, and ESS capacities.

    This webinar will focus on the following key topics:

    • The master/slave battery management system model
    • Reducing BMS hardware through module, tray and stack design
    • Battery stack solution examples
    • Management of multiple stacks in parallel

    Presenter
    Alex Ramji – Senior Hardware Designer at Nuvation Energy

    Alex Ramji manages Nuvation Energy’s Hardware Solutions team, a group that develops a range of battery management products for large-scale energy storage systems. He is the lead designer of integrated battery management solutions that simplify energy storage system development. He has designed stack-level battery management products, system-level control systems, and novel battery stack architectures. Alex brings a multidisciplinary skill set of both electrical and mechanical engineering to system design, and is a key contributor to Nuvation Energy’s megawatt-scale energy storage projects.

    Nuvation Energy is a proud sponsor of this event.

    Buy Now
  • Placeholder

    Solid-State Li-Ion Batteries – Key Technology Approaches & Time-to-Market

    Attendees will learn which solid-state batteries have been launched already into beachhead markets, and which technology barriers for now prevent deployment in mass EV applications. Risks & opportunities identified in IP portfolios by large battery & automotive manufacturers and key startups will be compared with go-to-market & technology readiness statements. Finally, we will explain why hybrid battery packs or cells based on both liquid and solid electrolytes could potentially accelerate the automotive adoption of solid-state batteries.

    This webinar will focus on the following key topics:

    • Solid-state Li-ion batteries
    • Key innovation approaches & global patent literature
    • Time-to-market with respect to key applications: electronics/IoT, medical implants, automotive/rolling stock, stationary energy storage
    • Examples of solid electrolyte, cathode & anode selection
    • Combination of solid electrolytes with liquid electrolytes at the pack or cell level

    Presenter
    Dr. Pirmin Ulmann – Co-Founder & CEO, B-Science.net

    Dr. Pirmin Ulmann is co-founder and CEO of b-science.net, an information service for the battery patent literature that is based on a supervised machine learning approach. Pirmin obtained a diploma in chemistry from ETH Zurich (Switzerland) in 2004 and a PhD from Northwestern University (USA) in 2009, followed by a postdoc at Tokyo University (Japan). From 2010 to 2016, while working at a major Li-ion battery materials manufacturer, he was a co-inventor of 7 patent families. He holds the credential Stanford Certified Project Manager and has co-authored scientific publications with more than 1,500 citations.

    Buy Now
  • Placeholder

    Approaches to Recovering Critical Materials From Spent Lithium-Ion Batteries

    FREE Webinar – Li-Cycle is a proud sponsor of this event.

    As the world transitions towards sustainability and low carbon emissions, lithium-ion batteries are being used across a broad spectrum of products and industries. The automotive industry, in particular, estimates 559 million of electric vehicles will be on the road by 2040. Consequently, lithium-ion battery waste is forecasted to hit over 11 million tonnes by 2030.

    How can the world deal with this oncoming tsunami of lithium-ion batteries?

    The audience will have the answer after this webinar as this presentation will walk through both global and future approaches to dealing with end-of-life batteries and explore the importance of recovering critical materials from lithium-ion batteries to meet future demand.

    This webinar will focus on the following key topics:

    • Global end-of-life lithium-ion battery market opportunity
    • Recycling vs reuse
    • Incumbent technologies for ‘recycling’ lithium-ion batteries
    • New technologies and techniques for recycling lithium-ion batteries
    • Comparative benefits of recycling technologies

    Presenters
    Ajay Kochhar – Co-Founder, President and CEO at Li-Cycle
    Tim Johnston – Co-Founder, Executive Chairman at Li-Cycle

    Ajay Kochhar is a Co-Founder, President and CEO of Li-Cycle Corporation, an industry leading lithium-ion battery resource recovery company. As President and CEO, Ajay is responsible for all strategic aspects of the company and overall leadership. Ajay has been pivotal in leading the company from an idea to a commercially operating lithium-ion battery recycling company.

    Tim Johnston is a Co-Founder and Executive Chairman of Li-Cycle Corporation. Since 2019, Tim has lead Operations, Research & Development, and Capital Projects at Li-Cycle. Prior to that as Non-Executive Chairman, he helped support the strategic decision making and guide the R&D team through critical phases of the company’s development.

    Li-Cycle is a proud sponsor of this event.

    Buy Now
  • Placeholder

    Battery Analytics Tutorial Course 1/3: Battery Analytics and the Role of the BMS

    This one-hour course will explore how various energy storage industry experts define the term “battery analytics.” It will also examine how the battery management system (BMS) is used to control the battery and provide real-time performance reporting, the lowest level of battery analytics.

    This webinar will focus on the following key topics:

    • The different types of battery analytics
    • How a BMS works and why it is the most basic component of any battery analytics platform
    • Real-time performance algorithms as the lowest level of analytics

    Presenter
    Michael Worry – CEO at Nuvation Energy

    Michael Worry founded Nuvation in 1997 and has grown the company over 21 years into a thriving electronic products and engineering services firm with offices in Sunnyvale, California and Waterloo, Ontario Canada. He is the CEO of Nuvation Energy, a provider of battery management systems and engineering services for large-scale energy storage systems.

    Buy Now
  • Placeholder

    Battery Analytics Tutorial Course 2/3: Data Capture and Trend Reporting

    This one-hour webinar is Part 2 of a 3-part series. Battery management systems take large amounts of sensor data readings on a continual basis as part of their functionality. Battery analytics involves leveraging battery performance data for tasks such as identifying issues that can reduce battery life, flagging behavior that can negatively impact energy storage system performance, and predicting remaining cell and pack life.

    This webinar will focus on the following key topics:

    • Sensor data capture, aggregation and manipulation into performance reports
    • Real-life examples will be shared, where aggregated historical data was analyzed and anomalous behaviors were identified
    • Also shared will be the inspections and testing of the pack to identify the cause of the anomalous behavior, and the discovery and resolution of the problems that caused the anomalies

    Presenter
    Michael Worry – CEO at Nuvation Energy

    Michael Worry founded Nuvation in 1997 and has grown the company over 21 years into a thriving electronic products and engineering services firm with offices in Sunnyvale, California and Waterloo, Ontario Canada. He is the CEO of Nuvation Energy, a provider of battery management systems and engineering services for large-scale energy storage systems.

    Buy Now
  • Placeholder

    Battery Analytics Tutorial Course 3/3: Predictive Modelling, Machine Learning, and AI

    This one-hour webinar is Part 3 of a 3-part series. It moves from a discussion of data capture and trend reporting explored in Part 2 to predictive modeling, machine learning, and artificial intelligence as the next levels of battery analytics.

    We will examine how machine learning and artificial intelligence can be implemented to identify hidden correlations between disparate data and energy storage system performance, and also independently take pre-emptive action to increase ESS reliability and battery life.

    Real-life examples will be shared where predictive models could have flagged anomalous behaviors that were experienced in the field, and led to corrective actions to mitigate unplanned costs and labor.

    This webinar will focus on the following key topics:

    • Coming to Terms – Understanding the differences between machine learning, artificial intelligence, deep learning, and rule-based systems
    • Predictive Modeling Approaches – using data mining and probability to forecast outcomes
    • What’s Next – How AI and Machine Learning will impact large-scale battery energy storage

    Presenter
    Michael Worry – CEO at Nuvation Energy

    Michael Worry founded Nuvation in 1997 and has grown the company over 21 years into a thriving electronic products and engineering services firm with offices in Sunnyvale, California and Waterloo, Ontario Canada. He is the CEO of Nuvation Energy, a provider of battery management systems and engineering services for large-scale energy storage systems.

    Buy Now
  • Placeholder

    Energy Storage Applications – Front-of-the-Meter and Behind-the-Meter Perspective

    The importance of energy storage is now well acknowledged and known by the energy sector. The pertinent question therefore is how and where. Energy storage applications are well spread across the value chain of energy. Electric Vehicles of course find the biggest deployment area for energy storage, but the opportunity present is much more largely spread. Right from front-of-the-meter (FTM) applications like DSM management, peak shifting, load balancing, providing ramping support to behind-the-meter (BTM) applications like DG optimization, microgrid sustenance, datacenters etc.

    This presentation will explain the opportunities present in the Indian market, and also throw light on various case studies with storage at FTM and BTM levels.

    This webinar will focus on the following key topics:

    • Overall market forecast – opportunities in India
    • Energy storage applications with renewables
    • Energy storage applications for Utilities and DISCOMs
    • Behind-the-Meter applications
    • EV applications

    Presenter
    Debmalya Sen – Senior Consultant, Emerging Technologies at Customized Energy Solutions

    Debmalya is an energy sector professional with around a decade of asset management and techno-commercial experience across coal, gas, renewable energy (solar and wind), high voltage sub-station operations, datacenter development, EV infrastructure development, innovation and sustainability. He is presently working as Senior Consultant – Emerging Technologies with Customized Energy Solutions. He works closely on energy storage and its application to industry, to help organizations strategize on new business lines and to find applications to integrate storage with existing assets. This includes areas like deployment of storage for DG optimization, RE firming, DSM Management, Utility level storage installation, storage application to defer T&D Investment decisions and Electric vehicle adoption strategies to name a few.

    Buy Now
  • Placeholder

    Battery Qualification 101

    FREE Webinar – Voltaiq is a proud sponsor of this event.

    Batteries are the most complex and failure prone components in modern devices. To mitigate risks, companies extensively qualify battery cells and packs, a time consuming and expensive process that can lead to delays in product launch if issues are surfaced. Effectively managing time, personnel, and equipment is critical to meeting deadlines while also ensuring products meet safety and performance requirements.

    In this webinar, we’ll provide an introduction to battery qualification and show interactive demonstrations of performance qualifications. We’ll also highlight best practices and value-added analytics to ensure that quality issues are surfaced soon as possible so that product release timelines are met.

    This webinar will focus on the following key topics:

    • Discuss the need to qualify batteries
    •  Discuss the different types of battery qualification
    •  Introduction to common performance qualifications — rate capability and cycle life among others
    • Interactive analysis demonstration, first using traditional tools and then using a Battery Intelligence System
    •  Best practices to ensure product release timelines are met

    Presenter
    Dr. Tal Sholklapper – CEO at Voltaiq

    Dr. Tal Sholklapper has an extensive record of success as a cleantech engineer and entrepreneur. Prior to founding Voltaiq, he worked as the lead engineer on a DOE ARPA-E funded project at the CUNY Energy Institute, developing an ultra low-cost grid-scale battery. Before joining CUNY, Dr. Sholklapper co-founded Point Source Power, a low cost fuel-cell startup based on technology he developed while at Lawrence Berkeley National Laboratory and UC Berkeley, where he also did his graduate work in Materials Science and Engineering. As a Materials Postdoctoral Fellow at LBNL, he successfully led the transfer of lab-scale technology to industry partners.

    Voltaiq is a proud sponsor of this event.

    Buy Now
  • Placeholder

    Battery Performance Testing – Pay Attention to the Details!

    The success of an energy storage project for stationary applications depends, for a large part, on how well the battery performs over time. Since there are little case studies showing real-world lifetime performance comparisons for various technologies the battery selection is primarily based on the performance data in a laboratory environment. Knowledge of the test conditions under which the data is obtained is critical to determine the suitability of the battery technology for the intended application. The influence of test conditions on the battery performance, and consequently on the battery selection process is discussed. The presentation presents real-world examples to emphasize on how subtle and often unspecified test conditions can affect the performance and lead to an un-optimized battery solution.

    This webinar will focus on the following key topics:

    • Battery selection process for stationary energy storage
    • Primary test conditions commonly presented
    • But…what’s hidden beneath the surface?
    • Examples of some subtle test conditions, if ignored, may lead to an un-optimized battery solution
    • How a good understanding of the product performance under different conditions can empower our customers with operating options

    Presenter
    Ashok Saraswat – Director, Energy Storage Research at NEC Energy Solutions

    Ashok Saraswat is working as Director, Energy Storage Research at NEC Energy Solutions located in the Boston area in the United States. After obtaining Ph.D. from Indian Institute of Technology, Delhi, India, Ashok Saraswat began his career in battery systems with a focus on Li-ion batteries. He has been involved in R&D, product and process development, assembly processes, and battery applications in various market segments including consumer electronics, aerospace and stationary storage.

    Buy Now
  • Placeholder

    Adding Intelligent Battery Management to Lead-Acid Energy Storage Systems

    Lead batteries are resilient and have a low likelihood of catastrophic failure. However, their lifespan can be significantly reduced when operated outside of manufacturer specifications. The extension of lead battery life through active battery management is becoming a compelling value proposition for vendors of lead-based energy storage systems.

    The evolving regulatory environment governing energy storage safety is also impacting how both lead and lithium chemistries are to be managed moving forward. Join Nuvation CEO Michael Worry to explore the reasons why active battery management is becoming adopted in large-scale lead battery applications, and how the changing regulatory environment is impacting lead-based energy storage.

    This webinar will focus on the following key topics:

    • Controlling off-gassing in vented and VRLA lead batteries
    • Emerging functional safety regulations and UL 1973
    • Using a BMS to reduce the levelized cost of energy
    • Automating stack connection sequencing in a multi-stack ESS
    • Lead-based energy storage system deployments

    Presenter
    Michael Worry – CEO at Nuvation Energy

    Michael Worry founded Nuvation in 1997 and has grown the company into a thriving electronic products and engineering services firm with offices in Sunnyvale, California and Waterloo, Ontario Canada. He is the CEO of Nuvation Energy, a provider of battery management systems and engineering services for large-scale energy storage systems.

    Buy Now