Showing 1–4 of 13 results

  • Placeholder

    Advancing Mining Processes to Make Better Materials for Use in Lithium Ion Batteries

    American Manganese Inc has developed a low-cost, environmentally friendly hydrometallurgical process to recover manganese (Mn) from lower grade resources. American Manganese has applied for a patent for their hydrometallurgical process that produces electrolytic manganese metal with low energy and water consumption. American Manganese commissioned R&D contractor, Kemetco Research Inc to determine uses of Artillery Peak manganese resource material to generate high value alternative products. Chemical manganese dioxide (CMD) and lithiated manganese oxide (LixMn2O4) for use in rechargeable batteries were the areas researched.

    The research was successful in producing CMD from Artillery Peak resource material with low cation impurities and avoiding processing steps that are known to introduce metallic impurities in the final product. Cation impurities cause capacity fade, whereas metallic impurities are known to cause catastrophic failures (such as fire and explosions) in lithium ion batteries. Working rechargeable lithium ion coin cell battery prototypes were produced from the CMD material.

    This webinar will focus on the following key topics:

    • Catastrophic failure of Li Ion batteries caused by metallic impurities that may be introduced from the mining of raw materials
    • Conventional mining process to recover MnO2 used to make LiMn2O4
    • Research on a new mining process that avoids steps known to introduce metallic impurities to recover MnO2 used to make LiMn2O4

    Presenter
    Norman Chow – President – Kemetco Research, Inc.

    Norman earned a B.A.Sc. and M.A.Sc. in Metals and Materials Engineering from University of British Columbia. He is a Registered Professional Engineer (P. Eng.) in British Columbia. He has over 15 years of technology development and contract research experience. He is the President of Kemetco Research Inc., which he formed after acquiring the Industrial Process Division of BC Research Inc. BC Research had been in operation for over 60 years as an R&D contractor.

    Buy Now
  • Placeholder

    Update on Zinc Hybrid Cathode Battery Technology: Lessons Learned from Demo Projects with Major Utilities in US & Europe

    With no economical means to store energy, the utility distribution network has typically been overbuilt and continually expanded to serve peak demand, though only a fraction of that infrastructure is used on an average day.

    Working closely with utility partners like AEP and Con Edison, Eos Energy Storage has evaluated the economics of battery storage on the distribution system, with compelling results. Using first-hand knowledge of system costs and specifications, it was found that a utility-owned battery system can break even with a conventional T&D upgrade of ~$5M, or less when monetizing available market revenues.

    In this webinar, Eos will share an update on commercialization of its zinc hybrid cathode battery technology and share lessons learned from deployments with major utilities in the US and Europe, from initial business case analysis to commissioning a turnkey product.

    This webinar will focus on the following key topics:

    • Discuss how energy storage can be leveraged as a utility distribution asset and market resource
    • Share Eos’s experience in deploying energy storage systems at utility sites in the US and Europe
    • Update on performance and path to commercialization for novel zinc hybrid cathode battery technology

    Presenter

    Philippe Bouchard – Vice President, Business Development at Eos Energy Storage

    Philippe joined Eos after 5 years of in-depth experience leading emerging technology and regulatory initiatives within the utility energy industry. While working previously within Southern California Edison’s Advanced Technology Organization, Philippe co-authored SCE’s Smart Grid Deployment Plan and managed a $3 million portfolio of diversified R&D and technology evaluation projects. Philippe brings an interdisciplinary background in chemistry and environmental sciences, and graduated with a B.A. from Pomona College.

    Buy Now
  • Placeholder

    Key Trends, Recent Developments and ‘What’s Next’ for Energy Storage?

    Billions of dollars have recently been invested into advanced energy storage systems initiatives globally. These include further development of R&D and manufacturing advancements in xEV batteries, stationary power systems, “beyond lithium” technologies, and more. NextEnergy will share some knowledge gained through its suite of venture support services, including access to funding opportunities, & in-depth value chain and market analyses, based on primary & secondary research.

    This webinar will highlight some key market and R&D trends, key innovators in the energy storage space, and take a high-level look at other initiatives influencing “what’s next” in the field of advanced energy storage, with an emphasis on Li Ion batteries for automotive applications.

    This webinar will focus on the following key topics:

    • NextEnergy’s capabilities, and a sneak preview of NextEnergy’s Li Ion battery value chain. This work is primarily focused on automotive applications
    • Key general trends in the energy storage sector, in terms of manufacturing, R&D, and market trends
    • A brief review of select early stage companies offering innovative solutions to the energy storage community
    • Select novel R&D initiatives in the Li Ion and “beyond lithium ion” spaces will be presented, at a high-level, and “what’s next” in energy storage systems will be addressed

    Presenter

    Kelly Jezierski – Energy Storage Manager, NextEnergy

    Kelly Jezierski has been with NextEnergy for over 7 years. NextEnergy is one of the nation’s leading accelerators of advanced energy technologies, businesses and industries. Kelly is leading a joint initiative funded by the US Department of Commerce and Michigan Economic Development Corporation (MEDC) to foster growth in the advanced energy storage cluster and fill gaps in the domestic supply chain. Kelly holds a Bachelor of Science degree in Chemical Engineering and a Master of Science degree in Alternative Energy Technologies degrees, both from Wayne State University.

    Buy Now
  • Placeholder

    Characterizing Performance and Determining Reliability of Batteries for Medical Applications

    As the number and variety of battery powered devices used in medical applications grows, batteries are playing an ever more important role in determining the reliability of these devices. Unlike the portable consumer electronics industry where high unit volumes can justify the design and manufacturing of custom batteries, the medical device industry must often utilize standard, off-the-shelf batteries for their devices. Even when the production of custom batteries is justified, few battery manufacturers appreciate the level of quality and reliability that is required by the medical device industry.

    In this webinar we will look at how to quantify the performance characteristics of batteries in a way that allows direct comparisons to be made between various vendors, form factors and chemistries. Case studies will be presented to demonstrate common mistakes made in battery selection and use, and methods for conducting accelerated aging studies will be discussed. When properly conducted, such aging studies can be used to identify potential reliability issues, monitor the manufacturing quality of the batteries and serve as a tool to aid in the selection and qualification of various battery vendors.

    This webinar will focus on the following key topics:

    • What do you need to know that is not on the specification sheets?
    • How do you make apples-to-apples performance comparisons between different battery types?
    • When is impedance and/or capacity matching important in multi-cell configurations?
    • How can quality be compared between vendors?
    • How can battery longevity be predicted in specific applications?

    Presenter

    Dr. Quinn C. Horn – Principal Engineer at Exponent, Inc.

    Dr. Quinn Horn has been with Exponent for ten years. He is also a Research Affiliate at the Massachusetts Institute of Technology, where he collaborates with researchers in the Electrochemical Energy Laboratory on projects related to electric vehicles and new gas diffusion electrodes for metal-air batteries and fuel cells.

    Buy Now