Showing 13–16 of 117 results

  • Placeholder

    Battery Ageing – How Modeling is Used to Predict Battery Life

    Battery modeling and simulation makes it possible to analyze multiple operating conditions and design parameters for batteries and other electrochemical systems and processes. By developing mathematical models you can begin to understand the interaction of electrochemical and chemical processes in the battery and how these processes affect the performance and life of the battery.

    In this presentation, we will take a look at the benefits of modeling and simulation in the design, selection, and operation of a lithium-ion battery. We will especially take a look at how modeling can be used together with testing. These results provide manufacturers and application experts with the data to not only predict battery life but to analyze the implications of design parameters and operating conditions to better understand the limitation of the battery.

    This webinar will focus on the following key topics:

    • Benefits of modeling and simulations in the design, selection, and operation of a lithium-ion battery
    • Implications of design parameters and operating conditions with respect to experimental observations of battery performance, aging, and battery safety
    • How battery modeling can be used together with testing

     Presenter

    Tom O’Hara – Global Business Manager, Intertek

    Tom O’Hara is the global business manager / advisory services for Intertek’s energy storage programs. Aside from his consulting role, Tom supports U.S. and European marketing and sales efforts and APAC CTIA certification efforts. As a 30-year veteran of the battery technology field, Tom has worked in Energizer Battery’s R&D sector and consulted with several start-up battery companies. He is also the co-inventor of the world’s first successful mercury-free zinc air button cell and holds seven U.S. patents. He obtained both a B.S. and M.S. in chemistry from Wake Forest University in North Carolina.

    Buy Now
  • Placeholder

    Recycling of Lithium Ion Batteries From Electric Vehicles

    The recycling of lithium-ion batteries – from EVs and others – will be discussed in this webinar.

    Recently, the pilot plant of project LithoRec II could prove that a newly developed combination of process steps enables the recovery of a mass fraction of 75 % and more on a material recycling basis from lithium-ion batteries. This is supposed to be much better than state of the art. Combining different process steps like discharging, dismantling, shredding, sifting and air-jet separation the project partners were able to achieve their goal: proving that lithium-ion batteries can be recycled better. One interesting process dealing with the electrolyte came in a black box (which was actually white) and this was because of another ongoing patenting process of Lion Engineering. A modified and simplified process works to directly recycle scraps from the production of lithium-ion batteries – in order to protect both: the environment and the stakeholder’s money.

    This webinar will focus on the following key topics:

    • Recycling of Lithium Ion Batteries
    • Recycling Yields and how to regain 75% and more – on a material recycling basis
    • Direct Recycling of LIB-Production Scraps

    Presenter
    Christian Hanisch – CEO at Lion Engineering

    Christian studied Process Engineering at TU Braunschweig (Germany) and has worked in the research project LithoRec and designed LithoRec II at the Institute for Particle Technology / TU Braunschweig on the topic of Recycling of Lithium Ion Batteries. He developed and patented new recycling processes and led the project to the realization of a pilot plant. Recognizing the highest interest of industrial partners in this topic he co-founded the spin-off Lion Engineering GmbH with fellow PhD students and Professor Arno Kwade in 2011. Beginning in 2016, Christian started to focus full-time on being CEO of Lion Engineering.

    Buy Now
  • Placeholder

    Determination of Battery Safety and Performance Parameters Using Adiabatic and Isothermal Calorimetry

    FREE Webinar – Thermal Hazard Technology is a proud sponsor of this event.

    This presentation describes two main types of calorimetry which can be used to carry out safety and performance testing on batteries. Isothermal calorimeters allow for direct heat measurement on cells during use, while adiabatic calorimeters can measure heat released from batteries during thermal runaway.

    Calorimetry can serve as a quantitative scientific method for evaluation of battery safety but it requires appropriate instrumentation. The principles of operation of both types of calorimeters are described along with specific applications within the field of battery testing.

    A combination of both technics allows for detailed thermal characterization of lithium-ion and other rechargeable cells, and differences due to chemistry, cell design, cell age, state of charge and cell size can be evaluated.

    This webinar will focus on the following key topics:

    • The principles of adiabatic and isothermal calorimetry
    • How calorimetry can be used in battery testing
    • Parameters established by adiabatic safety testing
    • Parameters established by isothermal performance testing
    • Pressure measurement and gas collection

    Presenter
    Danny Montgomery – Technical Performance Manager at Thermal Hazard Technology

    Danny Montgomery has worked at Thermal Hazard Technology for 9 years. His current role is Technical Performance Manager; overseeing the lab and technical aspects of instrumentation manufactured by THT. He joined the company in 2009 after graduating from Southampton University with a master’s degree in physics.

    Danny’s focus is primarily on lithium battery calorimetry; both adiabatic and isothermal. He oversees the use of calorimeters for customer sample testing as well as installing calorimeter systems and provided training for battery and automotive companies worldwide, such as Panasonic, BMW and Samsung. Danny works in Thermal Hazard Technology’s UK office in Milton Keynes.

    Buy Now
  • Placeholder

    Battery Safety Assessment: From Cell to Pack Level

    FREE Webinar – PlugVolt is a proud sponsor of this event.

    For fast and reliable battery pack development, a virtual assessment of battery safety via simulation is presented. The methodology, from single cell abuse testing up to battery pack simulation of crash and crush loads, is discussed. Cell tests that provide detailed understanding of the mechanical behavior of single Li-ion cells are used to improve battery stiffness and to optimize battery pack  design.

    This webinar will focus on the following key topics:

    • Method description: battery safety assessment from cell to pack level
    • Abuse cell tests
    • Abuse cell simulations
    • Crash and crush simulations at module and pack levels

    Presenter
    Jeremy Gaume – Project Manager, Analysis of Engineering and Technology Powertrain Systems at AVL GmbH

    Jeremy Gaume graduated from the University of Technology of Belfort-Montbeliard (U.T.B.M.), France, with a Master Diploma in thermo-mechanical system modelling and optimization. He has 10 years’ of experience in the automotive field. Before joining AVL, he worked at Magna Steyr for CAE crash (passive safety) assessment. After joining AVL, he was appointed as a Project Manager for Analysis of Engineering and Technology Powertrain Systems. Jeremy is an expert on crash/safety simulation for batteries.

    Buy Now