-

Energy Storage RTE Tutorial Course 2/3: Ampere-Hour (Ah) RTE and Voltage Polarization Energy Losses
Many aqueous systems have water electrolysis to contend with, and above 70-80% SOC, RTE losses from this competing reaction can be significant. Management of these losses has been evolving for decades, and there are now tried and tested methods mostly related to charging algorithms & partial state of charge (pSOC) cycling. These methods will be reviewed. Relevant for every battery chemistry, Cell Voltage factors, will be separated into eight different components, four each, for the cathode and anode. These will be presented & described. The variables that affect them will be reviewed, including the effects of age & cycling and methods for their ongoing measurement. Techniques to reduce and mitigate polarization will be detailed & possible benefits will be quantified in terms of RTE & cost for different scenarios.
This webinar will focus on the following key topics:
• Ah Efficiency losses in aqueous systems
• Types of Voltage Polarization losses for all systems
• Strategies and plans for reducing & mitigating efficiency losses
• Improvement potential for different systems
Presenter
Dr. Halle Cheeseman – Founder/President at Energy Blues LLC
Dr. Halle Cheeseman earned a PhD in Electrochemistry & Corrosion from the University of Nottingham in UK, graduating in 1985. She has held several executive positions in the battery industry over the past 32 years, including Sr. VP of R&D at Spectrum Brands and VP of R&D at Exide Technologies. Her specific battery experience includes Lithium Ion, Zinc Air, Nickel Metal Hydride, Nickel Iron, Alkaline and Lead Acid, focusing on Consumer, Industrial, Automotive & Renewable Energy applications. In July 2017, Dr. Cheeseman founded Energy Blues LLC, an energy storage consulting cooperative comprising 20+ subject matter experts.
Buy Now
-

Beyond Electrochemical Analysis – 2D to 4D Correlation of Microstructure and Chemistry in Li-ion Batteries
Single imaging instruments as well as correlative microscopy workflows have demonstrated some unique abilities to support LIB research beyond electrochemical analysis methods. Light microscopy delivers insights about ablation effects & phase orientations in the active material, while scanning electron microscopy (SEM) reveals information about aging effects, nanometer cracks & the composition of the active material. Combining SEM with in-situ Raman spectroscopy extends the traditional SEM capabilities to organic and inorganic material identification. X-ray microscopy, furthermore, delivers 3D non-destructive imaging of full battery packs and localized high-resolution information, thus allowing the identification of regions of interest within the battery material volume. This presentation will demonstrate the application of these techniques to Li-ion battery research, including examples on anode, cathode, binder, and separator materials.
This webinar will focus on the following key topics:
• Introduction to available microscopic investigation techniques
for Li-ion battery research:
– Light Microscopy
– Scanning Electron Microscopy
– X-ray Microscopy
– Raman Spectroscopy
• Review of recent battery imaging studies in published literature
• Case studies on using correlative microscopy to characterize battery performance & failure mechanisms
Presenter
Stefanie Freitag – Market Segment Manager at Carl Zeiss
Stefanie is Market Segment Manager in Materials Research at Carl Zeiss Microscopy in Munich. She holds a Diploma in Engineering Physics, gained first work experiences in a nuclear fusion reactor with a pioneering concept in Greifswald, then worked 3 years in the solar industry in Ulm & Hsinchu, Taiwan. In her current position she analyzes and defines new microscopic solutions for specific materials segments including light microscopy, electron microscopy, x-ray microscopy and chemical methods like Raman spectroscopy.
Buy Now
-

Understand and Prevent Battery Fires and Explosions – and Avoid Costly Failures Like the Samsung Note 7
Modern batteries (eg Li-Ion) contain hazardous chemicals & they heat up during use: this combination always has the potential to cause fires & explosions. This presentation will focus on improving the understanding of how these incidents occur, what can be done to avoid them & how the risk can be minimized during early stage design.
The Samsung Note 7 phone & Boeing Dreamliner airplane fires are very costly examples of how even large corporations fail to understand the potential fire risk of batteries.
The solution lies in knowledge of heat generation rate during normal use & information about safe boundaries such as temperature, discharge rate & overcharge, in realistic situations that represent actual use conditions. Data from commercial batteries of different types will be used to illustrate these points.
A relatively new technique will also be discussed with data, which allows total heat output during discharge to be measured on-line and this can be used both for design and battery modelling. Examples of the data will be provided.
This webinar will focus on the following key topics:
• Why battery fires & explosions occur
• How to design safer batteries though understanding of heat generation
• Video evidence of batteries under explosive conditions
• How better thermal management systems can be designed – based on heat measurement from isothermal calorimetry
• Laboratory instruments suitable for testing and data generation
Presenter
Dr. Jasbir Singh – Managing Director at Hazard Evaluation Laboratory
Jasbir is a chemical engineer specializing in thermal hazards and calorimetry, traditionally for the chemical industry but now increasingly involved in battery safety, especially Li-ion EV and related types.
A graduate of Imperial College (London), where he undertook PhD into combustion and explosions, his experience includes many years in process design for the chemical and petrochemical industries. He is currently developing test methods and instruments for use in design of battery thermal management systems.
Buy Now
-

Advancing Mining Processes to Make Better Materials for Use in Lithium Ion Batteries
American Manganese Inc has developed a low-cost, environmentally friendly hydrometallurgical process to recover manganese (Mn) from lower grade resources. American Manganese has applied for a patent for their hydrometallurgical process that produces electrolytic manganese metal with low energy and water consumption. American Manganese commissioned R&D contractor, Kemetco Research Inc to determine uses of Artillery Peak manganese resource material to generate high value alternative products. Chemical manganese dioxide (CMD) and lithiated manganese oxide (LixMn2O4) for use in rechargeable batteries were the areas researched.
The research was successful in producing CMD from Artillery Peak resource material with low cation impurities and avoiding processing steps that are known to introduce metallic impurities in the final product. Cation impurities cause capacity fade, whereas metallic impurities are known to cause catastrophic failures (such as fire and explosions) in lithium ion batteries. Working rechargeable lithium ion coin cell battery prototypes were produced from the CMD material.
This webinar will focus on the following key topics:
• Catastrophic failure of Li Ion batteries caused by metallic impurities that may be introduced from the mining of raw materials
• Conventional mining process to recover MnO2 used to make LiMn2O4
• Research on a new mining process that avoids steps known to introduce metallic impurities to recover MnO2 used to make LiMn2O4
Presenter
Norman Chow – President – Kemetco Research, Inc.
Norman earned a B.A.Sc. and M.A.Sc. in Metals and Materials Engineering from University of British Columbia. He is a Registered Professional Engineer (P. Eng.) in British Columbia. He has over 15 years of technology development and contract research experience. He is the President of Kemetco Research Inc., which he formed after acquiring the Industrial Process Division of BC Research Inc. BC Research had been in operation for over 60 years as an R&D contractor.
Buy Now
Leave a Reply
You must be logged in to post a comment.