-

Certification Challenges for Secondary Use EV Batteries
As the 1st generation of Lithium-ion based hybrid and battery electric vehicles are reaching end-of life, or original traction batteries are being replaced with new batteries, the interest in secondary life or repurposing of these batteries continues to grow. Lithium-ion batteries present several challenges to Auto OEM’s, Recyclers and waste operators. Repurposing of EV batteries for non-automotive applications also creates new challenges for certification and acceptance by AHJ’s (Authorities Having Jurisdiction). This webinar discusses the current market challenges and concerns, while providing a roadmap of the current options for various usage cases of reused or repurposed EV batteries.
This webinar will focus on the following key topics:
• Understand the usage cases for secondary life batteries
• Review market drivers for secondary use batteries
• Review the concerns of battery and cell manufacturers with re-use of lithium-ion batteries
• Discuss the unique challenges to certifying used batteries for new applications
• Discuss current options for certification in the US market
Presenter
Rich Byczek – Global Technical Director for Transportation Technologies at Intertek
Rich has over 20 years of experience in product development and validation testing, 14 of which have been spent at Intertek. Mr. Byczek is also an expert in the areas of energy storage, audio equipment and EMC testing. He sits on several SAE, IEC, UL and ANSI standards panels, focusing on Energy Storage and Electric Vehicle Technologies. He holds a Bachelor of Science in Electrical Engineering from Lawrence Technological University in Southfield, Michigan, and is based at the Intertek facility located in Plymouth, Michigan.
Buy Now
-

Battery Ageing – How Modeling is Used to Predict Battery Life
Battery modeling and simulation makes it possible to analyze multiple operating conditions and design parameters for batteries and other electrochemical systems and processes. By developing mathematical models you can begin to understand the interaction of electrochemical and chemical processes in the battery and how these processes affect the performance and life of the battery.
In this presentation, we will take a look at the benefits of modeling and simulation in the design, selection, and operation of a lithium-ion battery. We will especially take a look at how modeling can be used together with testing. These results provide manufacturers and application experts with the data to not only predict battery life but to analyze the implications of design parameters and operating conditions to better understand the limitation of the battery.
This webinar will focus on the following key topics:
• Benefits of modeling and simulations in the design, selection, and operation of a lithium-ion battery
• Implications of design parameters and operating conditions with respect to experimental observations of battery performance, aging, and battery safety
• How battery modeling can be used together with testing
Presenter
Tom O’Hara – Global Business Manager, Intertek
Tom O’Hara is the global business manager / advisory services for Intertek’s energy storage programs. Aside from his consulting role, Tom supports U.S. and European marketing and sales efforts and APAC CTIA certification efforts. As a 30-year veteran of the battery technology field, Tom has worked in Energizer Battery’s R&D sector and consulted with several start-up battery companies. He is also the co-inventor of the world’s first successful mercury-free zinc air button cell and holds seven U.S. patents. He obtained both a B.S. and M.S. in chemistry from Wake Forest University in North Carolina.
Buy Now
-

Advancing Mining Processes to Make Better Materials for Use in Lithium Ion Batteries
American Manganese Inc has developed a low-cost, environmentally friendly hydrometallurgical process to recover manganese (Mn) from lower grade resources. American Manganese has applied for a patent for their hydrometallurgical process that produces electrolytic manganese metal with low energy and water consumption. American Manganese commissioned R&D contractor, Kemetco Research Inc to determine uses of Artillery Peak manganese resource material to generate high value alternative products. Chemical manganese dioxide (CMD) and lithiated manganese oxide (LixMn2O4) for use in rechargeable batteries were the areas researched.
The research was successful in producing CMD from Artillery Peak resource material with low cation impurities and avoiding processing steps that are known to introduce metallic impurities in the final product. Cation impurities cause capacity fade, whereas metallic impurities are known to cause catastrophic failures (such as fire and explosions) in lithium ion batteries. Working rechargeable lithium ion coin cell battery prototypes were produced from the CMD material.
This webinar will focus on the following key topics:
• Catastrophic failure of Li Ion batteries caused by metallic impurities that may be introduced from the mining of raw materials
• Conventional mining process to recover MnO2 used to make LiMn2O4
• Research on a new mining process that avoids steps known to introduce metallic impurities to recover MnO2 used to make LiMn2O4
Presenter
Norman Chow – President – Kemetco Research, Inc.
Norman earned a B.A.Sc. and M.A.Sc. in Metals and Materials Engineering from University of British Columbia. He is a Registered Professional Engineer (P. Eng.) in British Columbia. He has over 15 years of technology development and contract research experience. He is the President of Kemetco Research Inc., which he formed after acquiring the Industrial Process Division of BC Research Inc. BC Research had been in operation for over 60 years as an R&D contractor.
Buy Now
-

The Potential Impact of a New U.S. Administration on Electric and Hybrid Vehicles
The impact of the election upon government policy & the automotive industry is complicated and unclear. Fuel economy regulations are in place through Model Year 2021. We will explore the potential impacts on Model Years 2022-25 & beyond including the Midterm Review & the California Zero Emission Vehicle regulations which become more stringent in 2018.
The strategies of the global automakers will be discussed including Volkswagen (as it attempts to recover from its diesel scandal) & the Detroit Three automakers that are focusing their expansion on markets outside North America. The role of China will also be assessed.
Technology improvements and their implication upon cost will also be discussed, as will the full impact of electrification (including 48 volt technology) on the vehicle fleet.
This webinar will focus on the following key topics:
• Potential Legislative & Regulatory Changes Affecting Manufacturers and Consumers
• Potential Responses by Industry & the New Administration to EPA Regulation for Model Years 2022-2025
• Potential Responses from NHTSA Which May Still Rule on 2022-2025 Period
• Reaction From California & the Impact of Its Zero Emission Vehicle Policies
• Impact of Automaker Strategies Which are Global
• Impact of Business & Technological Trends
Presenter
Alan Baum – Principal, Baum & Associates
Alan Baum formed Baum & Associates in August 2009. The company produces a detailed sales forecast and product life cycle for hybrid and electric vehicles. Baum has experience analyzing the impact of alternative fuel vehicles as well as advanced technologies in internal combustion engines that provide improved fuel economy. Since the 1980s, Baum has produced an automotive production forecast and detailed analysis of the automotive market. He has experience in the area of fuel economy and emissions regulation, the impact of fuel prices, & the market for hybrid and electric vehicles.
Buy Now
Leave a Reply
You must be logged in to post a comment.