-

Avoid Battery Explosions and Fires – With Right Data and Better Designs
Modern Li Ion batteries contain hazardous chemicals and heat up during use – this combination always has the potential to cause fires and explosions. This presentation will focus on improving the understanding of how such incidents occur, what can be done to avoid them and how the risk can be minimized during early stage design.
The solution lies in knowledge of the heat generation rate during normal use, and information about safe boundaries such as temperature, discharge rate & overcharge in realistic situations that represent actual conditions of use. Data from commercial batteries of different types, including videos of batteries undergoing thermal runaway, will be used to illustrate these points.
A relatively new technique will also be discussed with data, which allows total heat output during discharge to be measured on-line and this can be used both for design and battery modelling. Examples of the data will be provided.
This webinar will focus on the following key topics:
• Why battery fires and explosions occur
• How to design safer batteries through understanding of heat generation
• Video evidence of batteries under explosive conditions
• How better thermal management systems can be designed – based on heat measurement from isothermal calorimetry
• Laboratory instruments suitable for testing and data generation
Presenter
Dr. Jasbir Singh – Managing Director at Hazard Evaluation Laboratory
Jasbir is a chemical engineer specializing in thermal hazards and calorimetry, traditionally for the chemical industry but now increasingly involved in battery safety, especially Li-ion EV and related types.
A graduate of Imperial College (London), where he undertook PhD into combustion and explosions, his experience includes many years in process design for the chemical and petrochemical industries. He is currently developing test methods and instruments for use in design of battery thermal management systems.
Buy Now
-

Preventing Thermal Runaway in Energy Storage Systems (ESS)
From air transportation to electric vehicles and most recently “Hover Boards”, our industry is painfully aware of the over-discharge malfunctions associated with high-energy lithium-ion batteries, yet according to recent studies, nearly 70% of all Energy Storage Systems currently deployed are lithium-ion. Avoiding the pitfalls of utilizing greater energy density in larger installations is what will be discussed. Michelle will walk through the recent innovations from materials and process tracking in battery manufacturing to comprehensive control of cells in a fully deployed system. Incorporating lessons learned from recent failure investigations by the NTSB and FAA as well as new DoE mandates, Michelle will discuss how to achieve and in some areas surpass the new emerging safety certifications for a multi-megawatt energy storage system.
This webinar will focus on the following key topics:
• Making batteries safe or making safe batteries? (control & mitigation)
• Cell manufacture tracking, certification and response
– NTSB & DoE analysis and current situation
• Incorporating advanced battery management systems (BMS)
– Active cell dynamic balancing
– Cell replacement (hot-swapping)
– System reconfiguration
– Energy density scalability
Presenter
Michelle Klassen – VP of Business Development at Pathion, Inc.
Michelle Klassen is VP of Business Development for PATHION Inc. which manufactures high-performance, safe, and reliable Energy Storage Systems (ESS) for commercial markets ranging from 86 kilowatt-hours in stand-alone systems to over 1 megawatt-hour in containerized units. Prior to PATHION, as Vice President at ZeroBase Energy, she led the design and implementation of power systems and micro-grids for customers, including the US Department of Defense, Kenya Ministry of Energy and the L.A. Department of Water and Power.
Buy Now
-

Maximizing Battery Performance and Reliability for Electric Vehicles and Energy Storage
FREE Webinar – Voltaiq is a proud sponsor of this event.
As automakers and utilities transition away from non-renewable energy sources, batteries have become essential for efficient energy storage and delivery. Companies are working intensely to deliver higher capacity and more robust batteries to power their products, but ad hoc development processes cannot keep pace with the volume of battery data being generated. In addition, understaffed battery development teams are unable to leverage their data to accelerate development or improve production and manufacturing.
In this webinar, we will outline the challenges that the battery industry is facing and how big data analytics can virtually eliminate manual data management and provide powerful capabilities that deliver rapid insights into a battery’s design that dramatically accelerate the development process and results in products with greater performance and reliability.
This webinar will focus on the following key topics:
• Recognizing the challenges and bottlenecks in battery development today
• Automating the battery data collection, data cleaning, and data management process
• Identifying design issues earlier with predictive analytics
• Leveraging metadata to understand the impact of materials, processes and test conditions
Presenter
Dr. Tal Sholklapper – Co-Founder and CEO at Voltaiq
Dr. Tal Sholklapper is a co-founder of Voltaiq and serves as the company’s Chief Executive Officer. Before co-founding Voltaiq, Dr. Sholklapper was the lead engineer on a DOE ARPA-E funded project at the CUNY Energy Institute, developing an ultra-low-cost grid-scale battery. Prior to his work at CUNY, Tal co-founded Point Source Power, a low-cost fuel-cell startup based on technology he developed while at Lawrence Berkeley National Laboratory (LBNL) and UC Berkeley. Dr. Sholklapper has a BS in Physics and Applied Mathematics and an MS and PhD in Materials Science and Engineering from UC Berkeley.
Buy Now
-

Beyond Electrochemical Analysis – 2D to 4D Correlation of Microstructure and Chemistry in Li-ion Batteries
Single imaging instruments as well as correlative microscopy workflows have demonstrated some unique abilities to support LIB research beyond electrochemical analysis methods. Light microscopy delivers insights about ablation effects & phase orientations in the active material, while scanning electron microscopy (SEM) reveals information about aging effects, nanometer cracks & the composition of the active material. Combining SEM with in-situ Raman spectroscopy extends the traditional SEM capabilities to organic and inorganic material identification. X-ray microscopy, furthermore, delivers 3D non-destructive imaging of full battery packs and localized high-resolution information, thus allowing the identification of regions of interest within the battery material volume. This presentation will demonstrate the application of these techniques to Li-ion battery research, including examples on anode, cathode, binder, and separator materials.
This webinar will focus on the following key topics:
• Introduction to available microscopic investigation techniques
for Li-ion battery research:
– Light Microscopy
– Scanning Electron Microscopy
– X-ray Microscopy
– Raman Spectroscopy
• Review of recent battery imaging studies in published literature
• Case studies on using correlative microscopy to characterize battery performance & failure mechanisms
Presenter
Stefanie Freitag – Market Segment Manager at Carl Zeiss
Stefanie is Market Segment Manager in Materials Research at Carl Zeiss Microscopy in Munich. She holds a Diploma in Engineering Physics, gained first work experiences in a nuclear fusion reactor with a pioneering concept in Greifswald, then worked 3 years in the solar industry in Ulm & Hsinchu, Taiwan. In her current position she analyzes and defines new microscopic solutions for specific materials segments including light microscopy, electron microscopy, x-ray microscopy and chemical methods like Raman spectroscopy.
Buy Now