May 04, 2022 | 4:24 pm

$99.00

Oxide-based solid-state Li-batteries (SSLiBs) have the potential to be a transformational and intrinsically safe energy storage solution, due to their non-flammable ceramic electrolyte that enables the use of high-capacity Li metal anodes and high voltage cathodes for higher energy density over a much wider operating temperature range. However, their progress has been limited due to electrode/electrolyte interfacial issues. In particular, for Li-metal anodes concerns over dendrite formation/propagation and the requirement for elevated temperature and high stack pressure are still prevalent. To eliminate these concerns, a rational design of tailored structures and interfaces in Li-metal anodes will be presented. In addition, progress toward full cells using these tailored structures and interfaces will be presented.

This webinar will focus on the following key topics:

• Li-metal wetting of oxide electrolyte interface
• Effect of oxide surface defects on Li dendrite formation
• Effect of 3D structure on localized current density
• Avoiding stack pressure to maintain uniform Li/oxide contact

Presenter
Dr. Eric D Wachsman – Director of Maryland Energy Innovation Institute

Dr. Eric D Wachsman is the Crentz Centennial Chair in Energy Research and a Distinguished University Professor at the University of Maryland. He is also President of The Electrochemical Society (ECS) and Editor-in-Chief of Ionics, a Fellow of both ECS and the American Ceramic Society; elected member of the World Academy of Ceramics; the recipient of the Carl Wagner Award; the Sir William Grove Award; the Fuel Cell Seminar & Exposition Award; and the HTM Outstanding Achievement Award from ECS. His research is focused on solid ion-conducting materials and the development of solid-state batteries, fuel cells, ion-transport membranes, and gas sensors. He has more than 270 publications & 35 patents, and to date three companies have been founded based on these technologies.

Comments are closed.