-

Understand and Prevent Battery Fires and Explosions – and Avoid Costly Failures Like the Samsung Note 7
Modern batteries (eg Li-Ion) contain hazardous chemicals & they heat up during use: this combination always has the potential to cause fires & explosions. This presentation will focus on improving the understanding of how these incidents occur, what can be done to avoid them & how the risk can be minimized during early stage design.
The Samsung Note 7 phone & Boeing Dreamliner airplane fires are very costly examples of how even large corporations fail to understand the potential fire risk of batteries.
The solution lies in knowledge of heat generation rate during normal use & information about safe boundaries such as temperature, discharge rate & overcharge, in realistic situations that represent actual use conditions. Data from commercial batteries of different types will be used to illustrate these points.
A relatively new technique will also be discussed with data, which allows total heat output during discharge to be measured on-line and this can be used both for design and battery modelling. Examples of the data will be provided.
This webinar will focus on the following key topics:
• Why battery fires & explosions occur
• How to design safer batteries though understanding of heat generation
• Video evidence of batteries under explosive conditions
• How better thermal management systems can be designed – based on heat measurement from isothermal calorimetry
• Laboratory instruments suitable for testing and data generation
Presenter
Dr. Jasbir Singh – Managing Director at Hazard Evaluation Laboratory
Jasbir is a chemical engineer specializing in thermal hazards and calorimetry, traditionally for the chemical industry but now increasingly involved in battery safety, especially Li-ion EV and related types.
A graduate of Imperial College (London), where he undertook PhD into combustion and explosions, his experience includes many years in process design for the chemical and petrochemical industries. He is currently developing test methods and instruments for use in design of battery thermal management systems.
Buy Now
-

Solid Electrolytes and Bulk Scale Solid-State Batteries
Recently, the push to move beyond Li – ion battery technology has grown. Several advanced battery technologies & chemistries have been identified as promising candidates including i) solid-state batteries with Li metal anode, ii) Li – S chemistries, iii) Li – air(oxygen), and iv) flow batteries. Although an engineered solution using liquids may be possible for some of these options, a solid electrolyte is an enabling technology for each of these beyond Li – ion alternatives. This webinar will introduce the operating principles of each of these cell technologies and solid electrolytes will be discussed in this context. The requirements of a solid electrolyte will be outlined & several state of the art solid electrolytes will be compared. Recent technical progress towards the fabrication of solid-state batteries will be reviewed. Finally, an overview of market applications for solid-state will be presented.
This webinar will focus on the following key topics:
• Overview of beyond Li – ion battery technologies enabled by solid electrolytes
• Comparison of state of the art solid electrolytes
• Recent technical progress towards solid-state batteries
• Review of market applications for solid-state batteries
Presenter
Travis Thompson – Post Doctorate Research Fellow at University of Michigan
Travis received his B.S. in Mechanical Engineering in 2010 from California State Polytechnic University, Pomona, and his PhD in Materials Science at Michigan State University in 2014. His graduate work has focused on synthesis & processing of materials for direct thermal-to-electric energy conversion & storage. This includes ambient drying of silica aerogels, processing of oxide based thermoelectric materials, & electrochemical characterization of ceramic solid electrolytes for advanced batteries. He is now a Research Fellow at The University of Michigan and is exploring commercialization of Solid-State Batteries from his graduate work.
Buy Now
-

Update on Zinc Hybrid Cathode Battery Technology: Lessons Learned from Demo Projects with Major Utilities in US & Europe
With no economical means to store energy, the utility distribution network has typically been overbuilt and continually expanded to serve peak demand, though only a fraction of that infrastructure is used on an average day.
Working closely with utility partners like AEP and Con Edison, Eos Energy Storage has evaluated the economics of battery storage on the distribution system, with compelling results. Using first-hand knowledge of system costs and specifications, it was found that a utility-owned battery system can break even with a conventional T&D upgrade of ~$5M, or less when monetizing available market revenues.
In this webinar, Eos will share an update on commercialization of its zinc hybrid cathode battery technology and share lessons learned from deployments with major utilities in the US and Europe, from initial business case analysis to commissioning a turnkey product.
This webinar will focus on the following key topics:
• Discuss how energy storage can be leveraged as a utility distribution asset and market resource
• Share Eos’s experience in deploying energy storage systems at utility sites in the US and Europe
• Update on performance and path to commercialization for novel zinc hybrid cathode battery technology
Presenter
Philippe Bouchard – Vice President, Business Development at Eos Energy Storage
Philippe joined Eos after 5 years of in-depth experience leading emerging technology and regulatory initiatives within the utility energy industry. While working previously within Southern California Edison’s Advanced Technology Organization, Philippe co-authored SCE’s Smart Grid Deployment Plan and managed a $3 million portfolio of diversified R&D and technology evaluation projects. Philippe brings an interdisciplinary background in chemistry and environmental sciences, and graduated with a B.A. from Pomona College.
Buy Now
-

Accelerating Launch of New Battery Technologies by Expediting Samples Through Collaborative Partnerships
Polaris is a processing lab that accelerates new lithium ion battery developments resulting in faster delivery of samples. It provides processing services to accelerate the optimization of recipes for battery developers. Using its services, customers can avoid delays in launching products due to internal funding and staffing constraints.
Services include anode and cathode electrode mix and coat trials, pouch stack cell assemblies, cell and material analytical testing services, business advisory services, and a link to high volume production.
Two major roadblocks facing battery technology companies are addressed: 1) Startups lack staffing, process knowledge, funding, and equipment to develop samples, and 2) Commercialization of new battery technologies is capital intensive and takes long time to pass quality standards
This webinar will focus on the following key topics:
• Significant new material inventions in lithium ion and other advanced battery chemistries in the US
• Two primary issues or “gaps” in getting these technologies to the market
– generating samples for investors, customers and internal engineering evaluation and optimization
– building a battery factory and gaining product and quality system approval (a huge undertaking)
• Polaris Battery Labs Capability Overview for samples and commercialization
• Partner Profile; Carestream Heath as a contract coating partner to reduce time-to-market and risks
Presenter
Doug Morris – CEO – Polaris Battery Labs, LLC
Doug has over 30 years experience in the telecommunications, components, battery, and energy storage industries. Prior to working at Polaris Labs he was VP of Operations at Enevate. Doug has also held various executive, management, and engineering positions over his 21 year career with Motorola where he was VP and Director of Engineering, Quality, and Supply Chain Management for the Energy Systems Group. Doug was also a founder of Motorola’s Product Testing Services business.
Buy Now