
Battery Selection Tutorial Course 1/3: Selecting your Cell and Cell Manufacturer(s)
After designing your product, you need to ensure the battery with which you are operating it will ensure the right performance and lifetime. When deciding this, narrowing down which chemistry (e.g. Li-ion, lithium primary, NiMH, etc.) best fits your product and which form factor are some of the first steps. Choosing a cell design (high-power vs. high-energy, for example) is another step and finally, finding the right cell manufacturer to fabricate your cells and packs. This webinar is the first in a three-part series on designing the right battery for your product. It will cover many of the key differences in chemistries, form factors, and cell designs and other best practices.
This webinar will focus on the following key topics:
• Choosing the right chemistry for your application
• Choosing the right form factor
• Choosing cell designs (e.g. high power vs. high-energy)
Presenter
Exponent – a multidisciplinary engineering and scientific consulting firm with significant experience in various aspects of battery design, safety testing and failure analysis.
Buy Now

Lithium Ion Capacitors – Combining Energy with Power
FREE Webinar – JSR Micro, Inc. is a proud sponsor of this event.
Lithium Ion Capacitors (LIC) are hybrids of electric double-layer capacitors (EDLCs) and lithium ion batteries (LIB). Combining the reversible non-Faradaic cathode from an EDLC and the reversible Faradaic anode from an LIB results in an ultra or super capacitor with significantly increased energy density, improved float performance and low self-discharge rates. Avoiding the lithium metal oxide cathodes from LIB’s improves the inherent safety and eliminates Cobalt content, however still combines aspects of energy & power of both cell types. The Faradaic intercalation/deintercalation reactions at the anode are capable of generating a significant amount of charge, while the non-Faradaic electrostatic storage of the electrical energy formed at the interface of the electrode and the electrolyte, known as an electric double layer, results in fast charge and discharge capabilities for hundreds of thousands, if not millions of cycles.
This webinar will focus on the following key topics:
• What is an LIC? Technology Introduction
• Key Benefits
• Safety
• EDLC vs LIC
• Applications
Presenter
Jeff Myron – Energy Solutions Program Manager at JSR Micro, Inc.
Since 2011 Jeff has been responsible for business development in North America of JSR group’s environmental energy products including, lithium ion capacitors (LIC) and aqueous battery binders. Jeff joined JSR in 2006 as a Technical Sales Specialist for advanced photoresists utilized in IC manufacturing. Immediately prior to JSR, Jeff worked at Molecular Imprints developing the commercial infrastructure for next generation nano imprint lithography templates. Prior to joining Molecular Imprints, he held various engineering, engineering management & product management positions at Motorola, DuPont Photomask & Brewer Science. Jeff earned a bachelor’s degree in chemistry from Illinois State University in 1990 and an MBA from Webster University in 2001.
Buy Now

Addressing Engineering Challenges of Vehicle Electrification With Model-Based Systems Engineering
The concern for the environment and energy savings is changing the way we think about transportation. Wide spreading vehicle electrification – not only through Electric Vehicles (EV) and Hybrid Electric Vehicles (HEV), but also electrification in conventional vehicles – has become a common trend of the industry and the upcoming battlefield to install new leading positions. Accounting for costs, reliability, safety, performance, customer acceptance, infrastructure and design process makes manufacturers and suppliers facing new engineering challenges that need to be addressed in a very short time-frame.
Technologies used for electrification are causing a growing complexity in systems and components, and producing vehicles designed right, first, at reasonable costs make the implementation of collaborative mechatronic system simulation a decisive and mandatory step in the engineering process.
This webinar will focus on the following key topics:
• What are the global trends and challenges of vehicle electrification?
• What are the available technologies for reducing CO2 emissions?
• What are the benefits of stop & start and regenerative braking systems?
• How to characterize battery and optimize its thermal management?
• How do energy storage architectures impact battery aging?
Presenter
Himanshu Kalra – Application Engineer, Siemens
Himanshu Kalra is an Application Engineer with Siemens PLM Software. He graduated with his Masters of Science degree in Mechanical Engineering from Michigan Tech University and his Bachelors in Mechanical Engineering from Institute of Management and Technology, India. He works with Model Based Systems Engineering (MBSE) Simulation tools to model and analyze vehicle electrification strategies, including thermal management, battery characterization and the impacts on battery ageing. He also has an experience working with technologies used for reducing emissions on internal combustion engines.
Buy Now