-

Battery Ageing – How Modeling is Used to Predict Battery Life
Battery modeling and simulation makes it possible to analyze multiple operating conditions and design parameters for batteries and other electrochemical systems and processes. By developing mathematical models you can begin to understand the interaction of electrochemical and chemical processes in the battery and how these processes affect the performance and life of the battery.
In this presentation, we will take a look at the benefits of modeling and simulation in the design, selection, and operation of a lithium-ion battery. We will especially take a look at how modeling can be used together with testing. These results provide manufacturers and application experts with the data to not only predict battery life but to analyze the implications of design parameters and operating conditions to better understand the limitation of the battery.
This webinar will focus on the following key topics:
• Benefits of modeling and simulations in the design, selection, and operation of a lithium-ion battery
• Implications of design parameters and operating conditions with respect to experimental observations of battery performance, aging, and battery safety
• How battery modeling can be used together with testing
Presenter
Tom O’Hara – Global Business Manager, Intertek
Tom O’Hara is the global business manager / advisory services for Intertek’s energy storage programs. Aside from his consulting role, Tom supports U.S. and European marketing and sales efforts and APAC CTIA certification efforts. As a 30-year veteran of the battery technology field, Tom has worked in Energizer Battery’s R&D sector and consulted with several start-up battery companies. He is also the co-inventor of the world’s first successful mercury-free zinc air button cell and holds seven U.S. patents. He obtained both a B.S. and M.S. in chemistry from Wake Forest University in North Carolina.
Buy Now
-

Avoid Battery Explosions and Fires – With Right Data and Better Designs
Modern Li Ion batteries contain hazardous chemicals and heat up during use – this combination always has the potential to cause fires and explosions. This presentation will focus on improving the understanding of how such incidents occur, what can be done to avoid them and how the risk can be minimized during early stage design.
The solution lies in knowledge of the heat generation rate during normal use, and information about safe boundaries such as temperature, discharge rate & overcharge in realistic situations that represent actual conditions of use. Data from commercial batteries of different types, including videos of batteries undergoing thermal runaway, will be used to illustrate these points.
A relatively new technique will also be discussed with data, which allows total heat output during discharge to be measured on-line and this can be used both for design and battery modelling. Examples of the data will be provided.
This webinar will focus on the following key topics:
• Why battery fires and explosions occur
• How to design safer batteries through understanding of heat generation
• Video evidence of batteries under explosive conditions
• How better thermal management systems can be designed – based on heat measurement from isothermal calorimetry
• Laboratory instruments suitable for testing and data generation
Presenter
Dr. Jasbir Singh – Managing Director at Hazard Evaluation Laboratory
Jasbir is a chemical engineer specializing in thermal hazards and calorimetry, traditionally for the chemical industry but now increasingly involved in battery safety, especially Li-ion EV and related types.
A graduate of Imperial College (London), where he undertook PhD into combustion and explosions, his experience includes many years in process design for the chemical and petrochemical industries. He is currently developing test methods and instruments for use in design of battery thermal management systems.
Buy Now
-

Certification Challenges for Secondary Use EV Batteries
As the 1st generation of Lithium-ion based hybrid and battery electric vehicles are reaching end-of life, or original traction batteries are being replaced with new batteries, the interest in secondary life or repurposing of these batteries continues to grow. Lithium-ion batteries present several challenges to Auto OEM’s, Recyclers and waste operators. Repurposing of EV batteries for non-automotive applications also creates new challenges for certification and acceptance by AHJ’s (Authorities Having Jurisdiction). This webinar discusses the current market challenges and concerns, while providing a roadmap of the current options for various usage cases of reused or repurposed EV batteries.
This webinar will focus on the following key topics:
• Understand the usage cases for secondary life batteries
• Review market drivers for secondary use batteries
• Review the concerns of battery and cell manufacturers with re-use of lithium-ion batteries
• Discuss the unique challenges to certifying used batteries for new applications
• Discuss current options for certification in the US market
Presenter
Rich Byczek – Global Technical Director for Transportation Technologies at Intertek
Rich has over 20 years of experience in product development and validation testing, 14 of which have been spent at Intertek. Mr. Byczek is also an expert in the areas of energy storage, audio equipment and EMC testing. He sits on several SAE, IEC, UL and ANSI standards panels, focusing on Energy Storage and Electric Vehicle Technologies. He holds a Bachelor of Science in Electrical Engineering from Lawrence Technological University in Southfield, Michigan, and is based at the Intertek facility located in Plymouth, Michigan.
Buy Now
-

BIS Tutorial Course 2/3: Battery Intelligence in Research and Development (R&D)
FREE Webinar – Voltaiq is a proud sponsor of this event.
The development of new, improved battery systems is slowed by the long test times required to validate battery cycle life — three to six months for consumer electronics and multiple years for long-life applications such as transportation and energy storage.
In this webinar, we’ll review how Battery Intelligence Systems (BIS) can enable accelerated development cycles and time to market. BIS can not only speed development cycles with automated background analytics; it can also unlock new insights with enhanced analytical techniques, helping you make better decisions faster.
This webinar will focus on specific end-uses including fast-charge algorithm development, BMS algorithms and new materials development, and how BIS can accelerate optimization and new product introduction.
This webinar will focus on the following key topics:
• The state of the battery development ecosystem
• The design of experiments (DoE) to optimize performance
• Dramatic changes in workflow with Battery Intelligence System (BIS) Software
• Enhanced analytics examples including differential capacity analysis (dQ/dV vs V) and on-line correlative analysis
• BIS enabled faster development cycles and time to market
Presenter
Dr. Tal Sholklapper – CEO at Voltaiq
Dr. Tal Sholklapper is the CEO of Voltaiq. Before co-founding Voltaiq, Dr. Sholklapper was the lead engineer on a DOE ARPA-E funded project at the CUNY Energy Institute, developing an ultra-low-cost grid-scale battery. Prior to his work at CUNY, Dr. Sholklapper co-founded Point Source Power, a low-cost fuel-cell startup based on technology he developed while at Lawrence Berkeley National Laboratory. Dr. Sholklapper has a BS in Physics and Applied Mathematics and an MS and PhD in Materials Science and Engineering from UC Berkeley, where he holds the honor of completing the fastest engineering PhD in two and a half years.
Voltaiq is a proud sponsor of this event.
Buy Now