-

Battery Ageing – How Modeling is Used to Predict Battery Life
Battery modeling and simulation makes it possible to analyze multiple operating conditions and design parameters for batteries and other electrochemical systems and processes. By developing mathematical models you can begin to understand the interaction of electrochemical and chemical processes in the battery and how these processes affect the performance and life of the battery.
In this presentation, we will take a look at the benefits of modeling and simulation in the design, selection, and operation of a lithium-ion battery. We will especially take a look at how modeling can be used together with testing. These results provide manufacturers and application experts with the data to not only predict battery life but to analyze the implications of design parameters and operating conditions to better understand the limitation of the battery.
This webinar will focus on the following key topics:
• Benefits of modeling and simulations in the design, selection, and operation of a lithium-ion battery
• Implications of design parameters and operating conditions with respect to experimental observations of battery performance, aging, and battery safety
• How battery modeling can be used together with testing
Presenter
Tom O’Hara – Global Business Manager, Intertek
Tom O’Hara is the global business manager / advisory services for Intertek’s energy storage programs. Aside from his consulting role, Tom supports U.S. and European marketing and sales efforts and APAC CTIA certification efforts. As a 30-year veteran of the battery technology field, Tom has worked in Energizer Battery’s R&D sector and consulted with several start-up battery companies. He is also the co-inventor of the world’s first successful mercury-free zinc air button cell and holds seven U.S. patents. He obtained both a B.S. and M.S. in chemistry from Wake Forest University in North Carolina.
Buy Now
-

Solid Electrolytes and Bulk Scale Solid-State Batteries
Recently, the push to move beyond Li – ion battery technology has grown. Several advanced battery technologies & chemistries have been identified as promising candidates including i) solid-state batteries with Li metal anode, ii) Li – S chemistries, iii) Li – air(oxygen), and iv) flow batteries. Although an engineered solution using liquids may be possible for some of these options, a solid electrolyte is an enabling technology for each of these beyond Li – ion alternatives. This webinar will introduce the operating principles of each of these cell technologies and solid electrolytes will be discussed in this context. The requirements of a solid electrolyte will be outlined & several state of the art solid electrolytes will be compared. Recent technical progress towards the fabrication of solid-state batteries will be reviewed. Finally, an overview of market applications for solid-state will be presented.
This webinar will focus on the following key topics:
• Overview of beyond Li – ion battery technologies enabled by solid electrolytes
• Comparison of state of the art solid electrolytes
• Recent technical progress towards solid-state batteries
• Review of market applications for solid-state batteries
Presenter
Travis Thompson – Post Doctorate Research Fellow at University of Michigan
Travis received his B.S. in Mechanical Engineering in 2010 from California State Polytechnic University, Pomona, and his PhD in Materials Science at Michigan State University in 2014. His graduate work has focused on synthesis & processing of materials for direct thermal-to-electric energy conversion & storage. This includes ambient drying of silica aerogels, processing of oxide based thermoelectric materials, & electrochemical characterization of ceramic solid electrolytes for advanced batteries. He is now a Research Fellow at The University of Michigan and is exploring commercialization of Solid-State Batteries from his graduate work.
Buy Now
-

Battery Selection Tutorial Course 2/3: Beyond the Standards: Device-Specific Testing
After choosing your cell and manufacturer (Part 1 of this series), most likely, they will have passed the tests of various standards organizations. However, depending on your operating environment, you may need to go above and beyond the baseline to ensure your product operates as intended. This webinar is Part 2 in a three-part series and will review a variety of factors to consider in your device-specific testing, including designing tests to predict the outcomes of various user-abuse scenarios, understanding the mechanisms of gas generation, capacity retention based on different voltage windows, and what happens if you need to cycle your cells outside of their operating range (outside in an Arizona summer or Minnesota winter, for example).
This webinar will focus on the following key topics:
• User-abuse scenarios to prevent against
• Causes and effects of various gas generation mechanisms
• Voltage limits
Presenter
Exponent – a multidisciplinary engineering and scientific consulting firm with significant experience in various aspects of battery design, safety testing and failure analysis.
Buy Now
-

Beyond Electrochemical Analysis – 2D to 4D Correlation of Microstructure and Chemistry in Li-ion Batteries
Single imaging instruments as well as correlative microscopy workflows have demonstrated some unique abilities to support LIB research beyond electrochemical analysis methods. Light microscopy delivers insights about ablation effects & phase orientations in the active material, while scanning electron microscopy (SEM) reveals information about aging effects, nanometer cracks & the composition of the active material. Combining SEM with in-situ Raman spectroscopy extends the traditional SEM capabilities to organic and inorganic material identification. X-ray microscopy, furthermore, delivers 3D non-destructive imaging of full battery packs and localized high-resolution information, thus allowing the identification of regions of interest within the battery material volume. This presentation will demonstrate the application of these techniques to Li-ion battery research, including examples on anode, cathode, binder, and separator materials.
This webinar will focus on the following key topics:
• Introduction to available microscopic investigation techniques
for Li-ion battery research:
– Light Microscopy
– Scanning Electron Microscopy
– X-ray Microscopy
– Raman Spectroscopy
• Review of recent battery imaging studies in published literature
• Case studies on using correlative microscopy to characterize battery performance & failure mechanisms
Presenter
Stefanie Freitag – Market Segment Manager at Carl Zeiss
Stefanie is Market Segment Manager in Materials Research at Carl Zeiss Microscopy in Munich. She holds a Diploma in Engineering Physics, gained first work experiences in a nuclear fusion reactor with a pioneering concept in Greifswald, then worked 3 years in the solar industry in Ulm & Hsinchu, Taiwan. In her current position she analyzes and defines new microscopic solutions for specific materials segments including light microscopy, electron microscopy, x-ray microscopy and chemical methods like Raman spectroscopy.
Buy Now
Leave a Reply
You must be logged in to post a comment.