-

Avoid Battery Explosions and Fires – With Right Data and Better Designs
Modern Li Ion batteries contain hazardous chemicals and heat up during use – this combination always has the potential to cause fires and explosions. This presentation will focus on improving the understanding of how such incidents occur, what can be done to avoid them and how the risk can be minimized during early stage design.
The solution lies in knowledge of the heat generation rate during normal use, and information about safe boundaries such as temperature, discharge rate & overcharge in realistic situations that represent actual conditions of use. Data from commercial batteries of different types, including videos of batteries undergoing thermal runaway, will be used to illustrate these points.
A relatively new technique will also be discussed with data, which allows total heat output during discharge to be measured on-line and this can be used both for design and battery modelling. Examples of the data will be provided.
This webinar will focus on the following key topics:
• Why battery fires and explosions occur
• How to design safer batteries through understanding of heat generation
• Video evidence of batteries under explosive conditions
• How better thermal management systems can be designed – based on heat measurement from isothermal calorimetry
• Laboratory instruments suitable for testing and data generation
Presenter
Dr. Jasbir Singh – Managing Director at Hazard Evaluation Laboratory
Jasbir is a chemical engineer specializing in thermal hazards and calorimetry, traditionally for the chemical industry but now increasingly involved in battery safety, especially Li-ion EV and related types.
A graduate of Imperial College (London), where he undertook PhD into combustion and explosions, his experience includes many years in process design for the chemical and petrochemical industries. He is currently developing test methods and instruments for use in design of battery thermal management systems.
Buy Now
-

Update on Zinc Hybrid Cathode Battery Technology: Lessons Learned from Demo Projects with Major Utilities in US & Europe
With no economical means to store energy, the utility distribution network has typically been overbuilt and continually expanded to serve peak demand, though only a fraction of that infrastructure is used on an average day.
Working closely with utility partners like AEP and Con Edison, Eos Energy Storage has evaluated the economics of battery storage on the distribution system, with compelling results. Using first-hand knowledge of system costs and specifications, it was found that a utility-owned battery system can break even with a conventional T&D upgrade of ~$5M, or less when monetizing available market revenues.
In this webinar, Eos will share an update on commercialization of its zinc hybrid cathode battery technology and share lessons learned from deployments with major utilities in the US and Europe, from initial business case analysis to commissioning a turnkey product.
This webinar will focus on the following key topics:
• Discuss how energy storage can be leveraged as a utility distribution asset and market resource
• Share Eos’s experience in deploying energy storage systems at utility sites in the US and Europe
• Update on performance and path to commercialization for novel zinc hybrid cathode battery technology
Presenter
Philippe Bouchard – Vice President, Business Development at Eos Energy Storage
Philippe joined Eos after 5 years of in-depth experience leading emerging technology and regulatory initiatives within the utility energy industry. While working previously within Southern California Edison’s Advanced Technology Organization, Philippe co-authored SCE’s Smart Grid Deployment Plan and managed a $3 million portfolio of diversified R&D and technology evaluation projects. Philippe brings an interdisciplinary background in chemistry and environmental sciences, and graduated with a B.A. from Pomona College.
Buy Now
-

Preventing Thermal Runaway in Energy Storage Systems (ESS)
From air transportation to electric vehicles and most recently “Hover Boards”, our industry is painfully aware of the over-discharge malfunctions associated with high-energy lithium-ion batteries, yet according to recent studies, nearly 70% of all Energy Storage Systems currently deployed are lithium-ion. Avoiding the pitfalls of utilizing greater energy density in larger installations is what will be discussed. Michelle will walk through the recent innovations from materials and process tracking in battery manufacturing to comprehensive control of cells in a fully deployed system. Incorporating lessons learned from recent failure investigations by the NTSB and FAA as well as new DoE mandates, Michelle will discuss how to achieve and in some areas surpass the new emerging safety certifications for a multi-megawatt energy storage system.
This webinar will focus on the following key topics:
• Making batteries safe or making safe batteries? (control & mitigation)
• Cell manufacture tracking, certification and response
– NTSB & DoE analysis and current situation
• Incorporating advanced battery management systems (BMS)
– Active cell dynamic balancing
– Cell replacement (hot-swapping)
– System reconfiguration
– Energy density scalability
Presenter
Michelle Klassen – VP of Business Development at Pathion, Inc.
Michelle Klassen is VP of Business Development for PATHION Inc. which manufactures high-performance, safe, and reliable Energy Storage Systems (ESS) for commercial markets ranging from 86 kilowatt-hours in stand-alone systems to over 1 megawatt-hour in containerized units. Prior to PATHION, as Vice President at ZeroBase Energy, she led the design and implementation of power systems and micro-grids for customers, including the US Department of Defense, Kenya Ministry of Energy and the L.A. Department of Water and Power.
Buy Now
-

Advancing Mining Processes to Make Better Materials for Use in Lithium Ion Batteries
American Manganese Inc has developed a low-cost, environmentally friendly hydrometallurgical process to recover manganese (Mn) from lower grade resources. American Manganese has applied for a patent for their hydrometallurgical process that produces electrolytic manganese metal with low energy and water consumption. American Manganese commissioned R&D contractor, Kemetco Research Inc to determine uses of Artillery Peak manganese resource material to generate high value alternative products. Chemical manganese dioxide (CMD) and lithiated manganese oxide (LixMn2O4) for use in rechargeable batteries were the areas researched.
The research was successful in producing CMD from Artillery Peak resource material with low cation impurities and avoiding processing steps that are known to introduce metallic impurities in the final product. Cation impurities cause capacity fade, whereas metallic impurities are known to cause catastrophic failures (such as fire and explosions) in lithium ion batteries. Working rechargeable lithium ion coin cell battery prototypes were produced from the CMD material.
This webinar will focus on the following key topics:
• Catastrophic failure of Li Ion batteries caused by metallic impurities that may be introduced from the mining of raw materials
• Conventional mining process to recover MnO2 used to make LiMn2O4
• Research on a new mining process that avoids steps known to introduce metallic impurities to recover MnO2 used to make LiMn2O4
Presenter
Norman Chow – President – Kemetco Research, Inc.
Norman earned a B.A.Sc. and M.A.Sc. in Metals and Materials Engineering from University of British Columbia. He is a Registered Professional Engineer (P. Eng.) in British Columbia. He has over 15 years of technology development and contract research experience. He is the President of Kemetco Research Inc., which he formed after acquiring the Industrial Process Division of BC Research Inc. BC Research had been in operation for over 60 years as an R&D contractor.
Buy Now