
Battery Selection Tutorial Course 1/3: Selecting your Cell and Cell Manufacturer(s)
After designing your product, you need to ensure the battery with which you are operating it will ensure the right performance and lifetime. When deciding this, narrowing down which chemistry (e.g. Li-ion, lithium primary, NiMH, etc.) best fits your product and which form factor are some of the first steps. Choosing a cell design (high-power vs. high-energy, for example) is another step and finally, finding the right cell manufacturer to fabricate your cells and packs. This webinar is the first in a three-part series on designing the right battery for your product. It will cover many of the key differences in chemistries, form factors, and cell designs and other best practices.
This webinar will focus on the following key topics:
• Choosing the right chemistry for your application
• Choosing the right form factor
• Choosing cell designs (e.g. high power vs. high-energy)
Presenter
Exponent – a multidisciplinary engineering and scientific consulting firm with significant experience in various aspects of battery design, safety testing and failure analysis.
Buy Now

Beyond Electrochemical Analysis – 2D to 4D Correlation of Microstructure and Chemistry in Li-ion Batteries
Single imaging instruments as well as correlative microscopy workflows have demonstrated some unique abilities to support LIB research beyond electrochemical analysis methods. Light microscopy delivers insights about ablation effects & phase orientations in the active material, while scanning electron microscopy (SEM) reveals information about aging effects, nanometer cracks & the composition of the active material. Combining SEM with in-situ Raman spectroscopy extends the traditional SEM capabilities to organic and inorganic material identification. X-ray microscopy, furthermore, delivers 3D non-destructive imaging of full battery packs and localized high-resolution information, thus allowing the identification of regions of interest within the battery material volume. This presentation will demonstrate the application of these techniques to Li-ion battery research, including examples on anode, cathode, binder, and separator materials.
This webinar will focus on the following key topics:
• Introduction to available microscopic investigation techniques
for Li-ion battery research:
– Light Microscopy
– Scanning Electron Microscopy
– X-ray Microscopy
– Raman Spectroscopy
• Review of recent battery imaging studies in published literature
• Case studies on using correlative microscopy to characterize battery performance & failure mechanisms
Presenter
Stefanie Freitag – Market Segment Manager at Carl Zeiss
Stefanie is Market Segment Manager in Materials Research at Carl Zeiss Microscopy in Munich. She holds a Diploma in Engineering Physics, gained first work experiences in a nuclear fusion reactor with a pioneering concept in Greifswald, then worked 3 years in the solar industry in Ulm & Hsinchu, Taiwan. In her current position she analyzes and defines new microscopic solutions for specific materials segments including light microscopy, electron microscopy, x-ray microscopy and chemical methods like Raman spectroscopy.
Buy Now

Preventing Li Ion Battery Failures From a Manufacturing and Design Perspective
How can you be proactive and make sure your cell supplier is the right one and you don’t end up with thermal events and field failures? Is it enough to qualify a cell manufacturer according to industry standards? The answer is that the majority of compliance based testing is related to abuse tolerance. However, the vast majority of field failures do not occur under abuse scenarios, but happen under normal operating conditions due to manufacturing flaws or design and system tolerance issues that cause internal shorts. In this webinar, you will learn about common lithium ion battery failure modes and how to be proactive in preventing these.
This webinar will focus on the following key topics:
• Gain an understanding of lithium ion battery failure mechanisms and the pathway to thermal events
• Learn how cell design impacts battery safety and reliability
• Learn the basic steps in a lithium ion cell manufacturing process, and how the process controls affect safety and reliability
• Come away with a checklist to qualify your cell manufacturer
Presenter
Vidyu Challa – Technical Director at DfR Solutions
Vidyu Challa is Technical Director at DfR Solutions where she works on battery reliability and safety issues. Dr. Challa helps customers with their battery challenges including design reviews, manufacturing audits and supplier qualification. She obtained a PhD from CALCE Electronic Products and Systems Center at the
University of Maryland. She has broad based expertise that includes engineering technology start-up experience, product development, R&D, and business development. Dr. Challa has published her work in journals, presented at conferences and written blog articles.
Buy Now

Maximizing Battery Performance and Reliability for Electric Vehicles and Energy Storage
FREE Webinar – Voltaiq is a proud sponsor of this event.
As automakers and utilities transition away from non-renewable energy sources, batteries have become essential for efficient energy storage and delivery. Companies are working intensely to deliver higher capacity and more robust batteries to power their products, but ad hoc development processes cannot keep pace with the volume of battery data being generated. In addition, understaffed battery development teams are unable to leverage their data to accelerate development or improve production and manufacturing.
In this webinar, we will outline the challenges that the battery industry is facing and how big data analytics can virtually eliminate manual data management and provide powerful capabilities that deliver rapid insights into a battery’s design that dramatically accelerate the development process and results in products with greater performance and reliability.
This webinar will focus on the following key topics:
• Recognizing the challenges and bottlenecks in battery development today
• Automating the battery data collection, data cleaning, and data management process
• Identifying design issues earlier with predictive analytics
• Leveraging metadata to understand the impact of materials, processes and test conditions
Presenter
Dr. Tal Sholklapper – Co-Founder and CEO at Voltaiq
Dr. Tal Sholklapper is a co-founder of Voltaiq and serves as the company’s Chief Executive Officer. Before co-founding Voltaiq, Dr. Sholklapper was the lead engineer on a DOE ARPA-E funded project at the CUNY Energy Institute, developing an ultra-low-cost grid-scale battery. Prior to his work at CUNY, Tal co-founded Point Source Power, a low-cost fuel-cell startup based on technology he developed while at Lawrence Berkeley National Laboratory (LBNL) and UC Berkeley. Dr. Sholklapper has a BS in Physics and Applied Mathematics and an MS and PhD in Materials Science and Engineering from UC Berkeley.
Buy Now