
Battery Selection Tutorial Course 2/3: Beyond the Standards: Device-Specific Testing
After choosing your cell and manufacturer (Part 1 of this series), most likely, they will have passed the tests of various standards organizations. However, depending on your operating environment, you may need to go above and beyond the baseline to ensure your product operates as intended. This webinar is Part 2 in a three-part series and will review a variety of factors to consider in your device-specific testing, including designing tests to predict the outcomes of various user-abuse scenarios, understanding the mechanisms of gas generation, capacity retention based on different voltage windows, and what happens if you need to cycle your cells outside of their operating range (outside in an Arizona summer or Minnesota winter, for example).
This webinar will focus on the following key topics:
• User-abuse scenarios to prevent against
• Causes and effects of various gas generation mechanisms
• Voltage limits
Presenter
Exponent – a multidisciplinary engineering and scientific consulting firm with significant experience in various aspects of battery design, safety testing and failure analysis.
Buy Now

Battery Ageing – How Modeling is Used to Predict Battery Life
Battery modeling and simulation makes it possible to analyze multiple operating conditions and design parameters for batteries and other electrochemical systems and processes. By developing mathematical models you can begin to understand the interaction of electrochemical and chemical processes in the battery and how these processes affect the performance and life of the battery.
In this presentation, we will take a look at the benefits of modeling and simulation in the design, selection, and operation of a lithium-ion battery. We will especially take a look at how modeling can be used together with testing. These results provide manufacturers and application experts with the data to not only predict battery life but to analyze the implications of design parameters and operating conditions to better understand the limitation of the battery.
This webinar will focus on the following key topics:
• Benefits of modeling and simulations in the design, selection, and operation of a lithium-ion battery
• Implications of design parameters and operating conditions with respect to experimental observations of battery performance, aging, and battery safety
• How battery modeling can be used together with testing
Presenter
Tom O’Hara – Global Business Manager, Intertek
Tom O’Hara is the global business manager / advisory services for Intertek’s energy storage programs. Aside from his consulting role, Tom supports U.S. and European marketing and sales efforts and APAC CTIA certification efforts. As a 30-year veteran of the battery technology field, Tom has worked in Energizer Battery’s R&D sector and consulted with several start-up battery companies. He is also the co-inventor of the world’s first successful mercury-free zinc air button cell and holds seven U.S. patents. He obtained both a B.S. and M.S. in chemistry from Wake Forest University in North Carolina.
Buy Now

BIS Tutorial Course 1/3: Introducing Battery Intelligence Systems (BIS)
FREE Webinar – Voltaiq is a proud sponsor of this event.
While the industry is familiar with the battery and its BMS (battery management system), very few are aware of the critical need for a missing third layer, the Battery Intelligence System (BIS) needed to enable the leap in battery yield, energy density, and lifetime the industry is calling for.
Battery Intelligence Systems are needed to leverage the latent value sitting in data that companies are collecting today, including but not limited to: data generated in battery factories in Asia, product OEMs around the globe, and ‘data lakes’ collecting data from systems in the field.
Your organization already has the building blocks to enable BIS. In this webinar we’ll show you the benefits of unlocking the value of your battery data.
This webinar will focus on the following key topics:
• The need for Battery Intelligence
• State of the industry: insufficient resources to meet aggressive electrification goals
• State of data today: “Treating it like a mushroom and watching it grow”
• Automation of standard analyses
• Traceability with Battery Digital Twins
Presenter
Dr. Tal Sholklapper – CEO at Voltaiq
Dr. Tal Sholklapper is the CEO of Voltaiq. Before co-founding Voltaiq, Dr. Sholklapper was the lead engineer on a DOE ARPA-E funded project at the CUNY Energy Institute, developing an ultra-low-cost grid-scale battery. Prior to his work at CUNY, Dr. Sholklapper co-founded Point Source Power, a low-cost fuel-cell startup based on technology he developed while at Lawrence Berkeley National Laboratory. Dr. Sholklapper has a BS in Physics and Applied Mathematics and an MS and PhD in Materials Science and Engineering from UC Berkeley, where he holds the honor of completing the fastest engineering PhD in two and a half years.
Voltaiq is a proud sponsor of this event.
Buy Now

Solid Electrolytes and Bulk Scale Solid-State Batteries
Recently, the push to move beyond Li – ion battery technology has grown. Several advanced battery technologies & chemistries have been identified as promising candidates including i) solid-state batteries with Li metal anode, ii) Li – S chemistries, iii) Li – air(oxygen), and iv) flow batteries. Although an engineered solution using liquids may be possible for some of these options, a solid electrolyte is an enabling technology for each of these beyond Li – ion alternatives. This webinar will introduce the operating principles of each of these cell technologies and solid electrolytes will be discussed in this context. The requirements of a solid electrolyte will be outlined & several state of the art solid electrolytes will be compared. Recent technical progress towards the fabrication of solid-state batteries will be reviewed. Finally, an overview of market applications for solid-state will be presented.
This webinar will focus on the following key topics:
• Overview of beyond Li – ion battery technologies enabled by solid electrolytes
• Comparison of state of the art solid electrolytes
• Recent technical progress towards solid-state batteries
• Review of market applications for solid-state batteries
Presenter
Travis Thompson – Post Doctorate Research Fellow at University of Michigan
Travis received his B.S. in Mechanical Engineering in 2010 from California State Polytechnic University, Pomona, and his PhD in Materials Science at Michigan State University in 2014. His graduate work has focused on synthesis & processing of materials for direct thermal-to-electric energy conversion & storage. This includes ambient drying of silica aerogels, processing of oxide based thermoelectric materials, & electrochemical characterization of ceramic solid electrolytes for advanced batteries. He is now a Research Fellow at The University of Michigan and is exploring commercialization of Solid-State Batteries from his graduate work.
Buy Now