-

Advancing Mining Processes to Make Better Materials for Use in Lithium Ion Batteries
American Manganese Inc has developed a low-cost, environmentally friendly hydrometallurgical process to recover manganese (Mn) from lower grade resources. American Manganese has applied for a patent for their hydrometallurgical process that produces electrolytic manganese metal with low energy and water consumption. American Manganese commissioned R&D contractor, Kemetco Research Inc to determine uses of Artillery Peak manganese resource material to generate high value alternative products. Chemical manganese dioxide (CMD) and lithiated manganese oxide (LixMn2O4) for use in rechargeable batteries were the areas researched.
The research was successful in producing CMD from Artillery Peak resource material with low cation impurities and avoiding processing steps that are known to introduce metallic impurities in the final product. Cation impurities cause capacity fade, whereas metallic impurities are known to cause catastrophic failures (such as fire and explosions) in lithium ion batteries. Working rechargeable lithium ion coin cell battery prototypes were produced from the CMD material.
This webinar will focus on the following key topics:
• Catastrophic failure of Li Ion batteries caused by metallic impurities that may be introduced from the mining of raw materials
• Conventional mining process to recover MnO2 used to make LiMn2O4
• Research on a new mining process that avoids steps known to introduce metallic impurities to recover MnO2 used to make LiMn2O4
Presenter
Norman Chow – President – Kemetco Research, Inc.
Norman earned a B.A.Sc. and M.A.Sc. in Metals and Materials Engineering from University of British Columbia. He is a Registered Professional Engineer (P. Eng.) in British Columbia. He has over 15 years of technology development and contract research experience. He is the President of Kemetco Research Inc., which he formed after acquiring the Industrial Process Division of BC Research Inc. BC Research had been in operation for over 60 years as an R&D contractor.
Buy Now
-

Update on Zinc Hybrid Cathode Battery Technology: Lessons Learned from Demo Projects with Major Utilities in US & Europe
With no economical means to store energy, the utility distribution network has typically been overbuilt and continually expanded to serve peak demand, though only a fraction of that infrastructure is used on an average day.
Working closely with utility partners like AEP and Con Edison, Eos Energy Storage has evaluated the economics of battery storage on the distribution system, with compelling results. Using first-hand knowledge of system costs and specifications, it was found that a utility-owned battery system can break even with a conventional T&D upgrade of ~$5M, or less when monetizing available market revenues.
In this webinar, Eos will share an update on commercialization of its zinc hybrid cathode battery technology and share lessons learned from deployments with major utilities in the US and Europe, from initial business case analysis to commissioning a turnkey product.
This webinar will focus on the following key topics:
• Discuss how energy storage can be leveraged as a utility distribution asset and market resource
• Share Eos’s experience in deploying energy storage systems at utility sites in the US and Europe
• Update on performance and path to commercialization for novel zinc hybrid cathode battery technology
Presenter
Philippe Bouchard – Vice President, Business Development at Eos Energy Storage
Philippe joined Eos after 5 years of in-depth experience leading emerging technology and regulatory initiatives within the utility energy industry. While working previously within Southern California Edison’s Advanced Technology Organization, Philippe co-authored SCE’s Smart Grid Deployment Plan and managed a $3 million portfolio of diversified R&D and technology evaluation projects. Philippe brings an interdisciplinary background in chemistry and environmental sciences, and graduated with a B.A. from Pomona College.
Buy Now
-

Battery Analytics Tutorial Course 1/3: Battery Analytics and the Role of the BMS
This one-hour course will explore how various energy storage industry experts define the term “battery analytics.” It will also examine how the battery management system (BMS) is used to control the battery and provide real-time performance reporting, the lowest level of battery analytics.
This webinar will focus on the following key topics:
• The different types of battery analytics
• How a BMS works and why it is the most basic component of any battery analytics platform
• Real-time performance algorithms as the lowest level of analytics
Presenter
Michael Worry – CEO at Nuvation Energy
Michael Worry founded Nuvation in 1997 and has grown the company over 21 years into a thriving electronic products and engineering services firm with offices in Sunnyvale, California and Waterloo, Ontario Canada. He is the CEO of Nuvation Energy, a provider of battery management systems and engineering services for large-scale energy storage systems.
Buy Now
-

Energy Storage RTE Tutorial Course 2/3: Ampere-Hour (Ah) RTE and Voltage Polarization Energy Losses
Many aqueous systems have water electrolysis to contend with, and above 70-80% SOC, RTE losses from this competing reaction can be significant. Management of these losses has been evolving for decades, and there are now tried and tested methods mostly related to charging algorithms & partial state of charge (pSOC) cycling. These methods will be reviewed. Relevant for every battery chemistry, Cell Voltage factors, will be separated into eight different components, four each, for the cathode and anode. These will be presented & described. The variables that affect them will be reviewed, including the effects of age & cycling and methods for their ongoing measurement. Techniques to reduce and mitigate polarization will be detailed & possible benefits will be quantified in terms of RTE & cost for different scenarios.
This webinar will focus on the following key topics:
• Ah Efficiency losses in aqueous systems
• Types of Voltage Polarization losses for all systems
• Strategies and plans for reducing & mitigating efficiency losses
• Improvement potential for different systems
Presenter
Dr. Halle Cheeseman – Founder/President at Energy Blues LLC
Dr. Halle Cheeseman earned a PhD in Electrochemistry & Corrosion from the University of Nottingham in UK, graduating in 1985. She has held several executive positions in the battery industry over the past 32 years, including Sr. VP of R&D at Spectrum Brands and VP of R&D at Exide Technologies. Her specific battery experience includes Lithium Ion, Zinc Air, Nickel Metal Hydride, Nickel Iron, Alkaline and Lead Acid, focusing on Consumer, Industrial, Automotive & Renewable Energy applications. In July 2017, Dr. Cheeseman founded Energy Blues LLC, an energy storage consulting cooperative comprising 20+ subject matter experts.
Buy Now