
Accelerating Launch of New Battery Technologies by Expediting Samples Through Collaborative Partnerships
Polaris is a processing lab that accelerates new lithium ion battery developments resulting in faster delivery of samples. It provides processing services to accelerate the optimization of recipes for battery developers. Using its services, customers can avoid delays in launching products due to internal funding and staffing constraints.
Services include anode and cathode electrode mix and coat trials, pouch stack cell assemblies, cell and material analytical testing services, business advisory services, and a link to high volume production.
Two major roadblocks facing battery technology companies are addressed: 1) Startups lack staffing, process knowledge, funding, and equipment to develop samples, and 2) Commercialization of new battery technologies is capital intensive and takes long time to pass quality standards
This webinar will focus on the following key topics:
• Significant new material inventions in lithium ion and other advanced battery chemistries in the US
• Two primary issues or “gaps” in getting these technologies to the market
– generating samples for investors, customers and internal engineering evaluation and optimization
– building a battery factory and gaining product and quality system approval (a huge undertaking)
• Polaris Battery Labs Capability Overview for samples and commercialization
• Partner Profile; Carestream Heath as a contract coating partner to reduce time-to-market and risks
Presenter
Doug Morris – CEO – Polaris Battery Labs, LLC
Doug has over 30 years experience in the telecommunications, components, battery, and energy storage industries. Prior to working at Polaris Labs he was VP of Operations at Enevate. Doug has also held various executive, management, and engineering positions over his 21 year career with Motorola where he was VP and Director of Engineering, Quality, and Supply Chain Management for the Energy Systems Group. Doug was also a founder of Motorola’s Product Testing Services business.
Buy Now

Battery Selection Tutorial Course 3/3: Integrating Your Battery Into Your Product – Designing for Worst-Case Scenarios
The last part in Exponent’s three-part series, this webinar will focus on the finished product from the viewpoint of the battery. How can you best protect your battery within your device? Is your battery going to be user-replaceable? If you’re creating multi-cell packs, how should they be separated from (yet still connected to) each other? Should a thermal event occur, how can you prevent that from cascading through the whole pack? This webinar will help to answer many of those questions, and discuss design questions to help safeguard your battery pack throughout its entire lifecycle.
This webinar will focus on the following key topics:
• Creating multi-cell packs
• Containing thermal runaway events
Presenter
Exponent – a multidisciplinary engineering and scientific consulting firm with significant experience in various aspects of battery design, safety testing and failure analysis.
Buy Now

Energy Storage RTE Tutorial Course 1/3: What is Round Trip Efficiency (RTE)? Why is it Important? How Much Does it Cost?
In the first of this three-part webinar series, a definition of RTE will be presented along with simple system equations that are important to its understanding, determination and management. RTE for some popular battery systems i.e. Lead Acid, Lithium Ion, Vanadium Redox and Nickel Zinc will be computed as examples, and their variation with common variables such as rate, capacity variability & SOC swing will be discussed. The costs of Round Trip inefficiency can be significant, and are experienced by customers either in higher energy generating capital costs and/or higher operating expenses. The calculation of these higher costs will be reviewed, and there will be a discussion on the key industry variables that influence them. Different geographic and customer markets will be considered.
This webinar will focus on the following key topics:
• The Importance of RTE to battery selection decisions
• How does RTE impact CAPEX and/or OPEX for energy storage
• How is RTE defined and how can it be derived – comparison of different systems
• An introduction to ancillary equipment energy losses
Presenter
Dr. Halle Cheeseman – Founder/President at Energy Blues LLC
Dr. Halle Cheeseman earned a PhD in Electrochemistry & Corrosion from the University of Nottingham in UK, graduating in 1985. She has held several executive positions in the battery industry over the past 32 years, including Sr. VP of R&D at Spectrum Brands and VP of R&D at Exide Technologies. Her specific battery experience includes Lithium Ion, Zinc Air, Nickel Metal Hydride, Nickel Iron, Alkaline and Lead Acid, focusing on Consumer, Industrial, Automotive & Renewable Energy applications. In July 2017, Dr. Cheeseman founded Energy Blues LLC, an energy storage consulting cooperative comprising 20+ subject matter experts.
Buy Now

Addressing Engineering Challenges of Vehicle Electrification With Model-Based Systems Engineering
The concern for the environment and energy savings is changing the way we think about transportation. Wide spreading vehicle electrification – not only through Electric Vehicles (EV) and Hybrid Electric Vehicles (HEV), but also electrification in conventional vehicles – has become a common trend of the industry and the upcoming battlefield to install new leading positions. Accounting for costs, reliability, safety, performance, customer acceptance, infrastructure and design process makes manufacturers and suppliers facing new engineering challenges that need to be addressed in a very short time-frame.
Technologies used for electrification are causing a growing complexity in systems and components, and producing vehicles designed right, first, at reasonable costs make the implementation of collaborative mechatronic system simulation a decisive and mandatory step in the engineering process.
This webinar will focus on the following key topics:
• What are the global trends and challenges of vehicle electrification?
• What are the available technologies for reducing CO2 emissions?
• What are the benefits of stop & start and regenerative braking systems?
• How to characterize battery and optimize its thermal management?
• How do energy storage architectures impact battery aging?
Presenter
Himanshu Kalra – Application Engineer, Siemens
Himanshu Kalra is an Application Engineer with Siemens PLM Software. He graduated with his Masters of Science degree in Mechanical Engineering from Michigan Tech University and his Bachelors in Mechanical Engineering from Institute of Management and Technology, India. He works with Model Based Systems Engineering (MBSE) Simulation tools to model and analyze vehicle electrification strategies, including thermal management, battery characterization and the impacts on battery ageing. He also has an experience working with technologies used for reducing emissions on internal combustion engines.
Buy Now
Leave a Reply
You must be logged in to post a comment.