
Electrochemical Impedance Spectroscopy and Its Application to Battery Analysis
Electrochemical Impedance Spectroscopy (EIS) is a well-established experimental technique that has applications in coatings, corrosion, sensors, electrochemical double layer capacitors, batteries among others. The power of EIS partly comes from its ability to access a very wide range of frequencies (typically from MHz to μHz). For batteries, parameters such as the internal resistance, electrode surface capacitance and leakage are accessible at different frequencies across the spectrum. This allows EIS to gather all the relevant information with a single measurement. In this webinar, we will briefly introduce EIS and cover its application to batteries. We will talk about how to analyze typical data and how to gather the relevant information. We will further talk about available instrumentation and their limitations.
This webinar will focus on the following key topics:
• What is impedance spectroscopy?
• What can impedance spectroscopy do for Battery analysis?
• How can capacitance, internal resistance and leakage be determined using EIS?
• What are the instrumental requirements and limits?
Presenter
Chris Beasley – Gamry Instruments
Chris Beasley received a BS in Chemistry from Kutztown University in 2000 and got a PhD in electrochemistry from University of North Carolina at Chapel Hill in 2010. His doctoral dissertation was on using redox-active nanoparticles as supercapacitors. Chris joined Gamry Instruments in 2010.
Buy Now

Determination of Battery Safety and Performance Parameters Using Adiabatic and Isothermal Calorimetry
FREE Webinar – Thermal Hazard Technology is a proud sponsor of this event.
This presentation describes two main types of calorimetry which can be used to carry out safety and performance testing on batteries. Isothermal calorimeters allow for direct heat measurement on cells during use, while adiabatic calorimeters can measure heat released from batteries during thermal runaway.
Calorimetry can serve as a quantitative scientific method for evaluation of battery safety but it requires appropriate instrumentation. The principles of operation of both types of calorimeters are described along with specific applications within the field of battery testing.
A combination of both technics allows for detailed thermal characterization of lithium-ion and other rechargeable cells, and differences due to chemistry, cell design, cell age, state of charge and cell size can be evaluated.
This webinar will focus on the following key topics:
• The principles of adiabatic and isothermal calorimetry
• How calorimetry can be used in battery testing
• Parameters established by adiabatic safety testing
• Parameters established by isothermal performance testing
• Pressure measurement and gas collection
Presenter
Danny Montgomery – Technical Performance Manager at Thermal Hazard Technology
Danny Montgomery has worked at Thermal Hazard Technology for 9 years. His current role is Technical Performance Manager; overseeing the lab and technical aspects of instrumentation manufactured by THT. He joined the company in 2009 after graduating from Southampton University with a master’s degree in physics.
Danny’s focus is primarily on lithium battery calorimetry; both adiabatic and isothermal. He oversees the use of calorimeters for customer sample testing as well as installing calorimeter systems and provided training for battery and automotive companies worldwide, such as Panasonic, BMW and Samsung. Danny works in Thermal Hazard Technology’s UK office in Milton Keynes.
Buy Now

Maximizing Battery Performance and Reliability for Electric Vehicles and Energy Storage
FREE Webinar – Voltaiq is a proud sponsor of this event.
As automakers and utilities transition away from non-renewable energy sources, batteries have become essential for efficient energy storage and delivery. Companies are working intensely to deliver higher capacity and more robust batteries to power their products, but ad hoc development processes cannot keep pace with the volume of battery data being generated. In addition, understaffed battery development teams are unable to leverage their data to accelerate development or improve production and manufacturing.
In this webinar, we will outline the challenges that the battery industry is facing and how big data analytics can virtually eliminate manual data management and provide powerful capabilities that deliver rapid insights into a battery’s design that dramatically accelerate the development process and results in products with greater performance and reliability.
This webinar will focus on the following key topics:
• Recognizing the challenges and bottlenecks in battery development today
• Automating the battery data collection, data cleaning, and data management process
• Identifying design issues earlier with predictive analytics
• Leveraging metadata to understand the impact of materials, processes and test conditions
Presenter
Dr. Tal Sholklapper – Co-Founder and CEO at Voltaiq
Dr. Tal Sholklapper is a co-founder of Voltaiq and serves as the company’s Chief Executive Officer. Before co-founding Voltaiq, Dr. Sholklapper was the lead engineer on a DOE ARPA-E funded project at the CUNY Energy Institute, developing an ultra-low-cost grid-scale battery. Prior to his work at CUNY, Tal co-founded Point Source Power, a low-cost fuel-cell startup based on technology he developed while at Lawrence Berkeley National Laboratory (LBNL) and UC Berkeley. Dr. Sholklapper has a BS in Physics and Applied Mathematics and an MS and PhD in Materials Science and Engineering from UC Berkeley.
Buy Now