
Determination of Battery Safety and Performance Parameters Using Adiabatic and Isothermal Calorimetry
FREE Webinar – Thermal Hazard Technology is a proud sponsor of this event.
This presentation describes two main types of calorimetry which can be used to carry out safety and performance testing on batteries. Isothermal calorimeters allow for direct heat measurement on cells during use, while adiabatic calorimeters can measure heat released from batteries during thermal runaway.
Calorimetry can serve as a quantitative scientific method for evaluation of battery safety but it requires appropriate instrumentation. The principles of operation of both types of calorimeters are described along with specific applications within the field of battery testing.
A combination of both technics allows for detailed thermal characterization of lithium-ion and other rechargeable cells, and differences due to chemistry, cell design, cell age, state of charge and cell size can be evaluated.
This webinar will focus on the following key topics:
• The principles of adiabatic and isothermal calorimetry
• How calorimetry can be used in battery testing
• Parameters established by adiabatic safety testing
• Parameters established by isothermal performance testing
• Pressure measurement and gas collection
Presenter
Danny Montgomery – Technical Performance Manager at Thermal Hazard Technology
Danny Montgomery has worked at Thermal Hazard Technology for 9 years. His current role is Technical Performance Manager; overseeing the lab and technical aspects of instrumentation manufactured by THT. He joined the company in 2009 after graduating from Southampton University with a master’s degree in physics.
Danny’s focus is primarily on lithium battery calorimetry; both adiabatic and isothermal. He oversees the use of calorimeters for customer sample testing as well as installing calorimeter systems and provided training for battery and automotive companies worldwide, such as Panasonic, BMW and Samsung. Danny works in Thermal Hazard Technology’s UK office in Milton Keynes.
Buy Now

Avoid Battery Explosions and Fires – With Right Data and Better Designs
Modern Li Ion batteries contain hazardous chemicals and heat up during use – this combination always has the potential to cause fires and explosions. This presentation will focus on improving the understanding of how such incidents occur, what can be done to avoid them and how the risk can be minimized during early stage design.
The solution lies in knowledge of the heat generation rate during normal use, and information about safe boundaries such as temperature, discharge rate & overcharge in realistic situations that represent actual conditions of use. Data from commercial batteries of different types, including videos of batteries undergoing thermal runaway, will be used to illustrate these points.
A relatively new technique will also be discussed with data, which allows total heat output during discharge to be measured on-line and this can be used both for design and battery modelling. Examples of the data will be provided.
This webinar will focus on the following key topics:
• Why battery fires and explosions occur
• How to design safer batteries through understanding of heat generation
• Video evidence of batteries under explosive conditions
• How better thermal management systems can be designed – based on heat measurement from isothermal calorimetry
• Laboratory instruments suitable for testing and data generation
Presenter
Dr. Jasbir Singh – Managing Director at Hazard Evaluation Laboratory
Jasbir is a chemical engineer specializing in thermal hazards and calorimetry, traditionally for the chemical industry but now increasingly involved in battery safety, especially Li-ion EV and related types.
A graduate of Imperial College (London), where he undertook PhD into combustion and explosions, his experience includes many years in process design for the chemical and petrochemical industries. He is currently developing test methods and instruments for use in design of battery thermal management systems.
Buy Now

Energy Storage RTE Tutorial Course 2/3: Ampere-Hour (Ah) RTE and Voltage Polarization Energy Losses
Many aqueous systems have water electrolysis to contend with, and above 70-80% SOC, RTE losses from this competing reaction can be significant. Management of these losses has been evolving for decades, and there are now tried and tested methods mostly related to charging algorithms & partial state of charge (pSOC) cycling. These methods will be reviewed. Relevant for every battery chemistry, Cell Voltage factors, will be separated into eight different components, four each, for the cathode and anode. These will be presented & described. The variables that affect them will be reviewed, including the effects of age & cycling and methods for their ongoing measurement. Techniques to reduce and mitigate polarization will be detailed & possible benefits will be quantified in terms of RTE & cost for different scenarios.
This webinar will focus on the following key topics:
• Ah Efficiency losses in aqueous systems
• Types of Voltage Polarization losses for all systems
• Strategies and plans for reducing & mitigating efficiency losses
• Improvement potential for different systems
Presenter
Dr. Halle Cheeseman – Founder/President at Energy Blues LLC
Dr. Halle Cheeseman earned a PhD in Electrochemistry & Corrosion from the University of Nottingham in UK, graduating in 1985. She has held several executive positions in the battery industry over the past 32 years, including Sr. VP of R&D at Spectrum Brands and VP of R&D at Exide Technologies. Her specific battery experience includes Lithium Ion, Zinc Air, Nickel Metal Hydride, Nickel Iron, Alkaline and Lead Acid, focusing on Consumer, Industrial, Automotive & Renewable Energy applications. In July 2017, Dr. Cheeseman founded Energy Blues LLC, an energy storage consulting cooperative comprising 20+ subject matter experts.
Buy Now