-

New Developments in Isothermal Microcalorimetry and ARC® Testing Methods
FREE Webinar – THT is a proud sponsor of this event.
This presentation describes two main types of calorimetric techniques which can be used to carry out performance and safety testing on batteries. These are isothermal calorimetry and adiabatic calorimetry.
THT’s new Micro Battery Calorimeter is presented along with initial data from a prototype unit. This device is focused on high sensitivity measurement which is required for coin and button cell samples which produce only milliwatts of heat during use. This is an example of an isothermal calorimeter system.
The second half of the presentation covers battery testing methods for the ARC® adiabatic calorimeter system. The theoretical background of the test method is described and recommended practice for various types of testing are discussed.
This webinar will focus on the following key topics:
• Principles of isothermal calorimetry for batteries
• Introduction to the Micro Battery Calorimeter and initial data
• Theoretical background to ARC® testing
• Recommended ARC® testing practices
Presenter
Danny Montgomery – Technical Performance Manager at THT
Danny Montgomery has worked in Thermal Hazard Technology for 10 years. His current position is Technical Performance Manager. He manages THT’s test lab which has recently been expanded due to THT’s increasing cell testing workload.
He joined the company after graduating from Southampton University with a master’s degree in physics.
As well as managing the lab, Danny is involved with technical support, installation and training for THT’s calorimeter systems. He has provided training for battery and automotive companies around the world such as Panasonic, LG, Samsung, BMW and General Motors. Danny is based in THT’s head office in Bletchley, UK.
THT is a proud sponsor of this event.
Buy Now
-

BIS Tutorial Course 1/3: Introducing Battery Intelligence Systems (BIS)
FREE Webinar – Voltaiq is a proud sponsor of this event.
While the industry is familiar with the battery and its BMS (battery management system), very few are aware of the critical need for a missing third layer, the Battery Intelligence System (BIS) needed to enable the leap in battery yield, energy density, and lifetime the industry is calling for.
Battery Intelligence Systems are needed to leverage the latent value sitting in data that companies are collecting today, including but not limited to: data generated in battery factories in Asia, product OEMs around the globe, and ‘data lakes’ collecting data from systems in the field.
Your organization already has the building blocks to enable BIS. In this webinar we’ll show you the benefits of unlocking the value of your battery data.
This webinar will focus on the following key topics:
• The need for Battery Intelligence
• State of the industry: insufficient resources to meet aggressive electrification goals
• State of data today: “Treating it like a mushroom and watching it grow”
• Automation of standard analyses
• Traceability with Battery Digital Twins
Presenter
Dr. Tal Sholklapper – CEO at Voltaiq
Dr. Tal Sholklapper is the CEO of Voltaiq. Before co-founding Voltaiq, Dr. Sholklapper was the lead engineer on a DOE ARPA-E funded project at the CUNY Energy Institute, developing an ultra-low-cost grid-scale battery. Prior to his work at CUNY, Dr. Sholklapper co-founded Point Source Power, a low-cost fuel-cell startup based on technology he developed while at Lawrence Berkeley National Laboratory. Dr. Sholklapper has a BS in Physics and Applied Mathematics and an MS and PhD in Materials Science and Engineering from UC Berkeley, where he holds the honor of completing the fastest engineering PhD in two and a half years.
Voltaiq is a proud sponsor of this event.
Buy Now
-

Battery Safety Assessment: From Cell to Pack Level
FREE Webinar – PlugVolt is a proud sponsor of this event.
For fast and reliable battery pack development, a virtual assessment of battery safety via simulation is presented. The methodology, from single cell abuse testing up to battery pack simulation of crash and crush loads, is discussed. Cell tests that provide detailed understanding of the mechanical behavior of single Li-ion cells are used to improve battery stiffness and to optimize battery pack design.
This webinar will focus on the following key topics:
• Method description: battery safety assessment from cell to pack level
• Abuse cell tests
• Abuse cell simulations
• Crash and crush simulations at module and pack levels
Presenter
Jeremy Gaume – Project Manager, Analysis of Engineering and Technology Powertrain Systems at AVL GmbH
Jeremy Gaume graduated from the University of Technology of Belfort-Montbeliard (U.T.B.M.), France, with a Master Diploma in thermo-mechanical system modelling and optimization. He has 10 years’ of experience in the automotive field. Before joining AVL, he worked at Magna Steyr for CAE crash (passive safety) assessment. After joining AVL, he was appointed as a Project Manager for Analysis of Engineering and Technology Powertrain Systems. Jeremy is an expert on crash/safety simulation for batteries.
Buy Now
-

Simulation Of Battery Crash – Where Do We Stand?
FREE Webinar – PlugVolt is a proud sponsor of this event.
Safety is an important functional requirement in the development of large-format, energy-dense, lithium-ion (Li-ion) batteries used in electrified vehicles. Computer aided engineering (CAE) tools that predict the response of a Li-ion battery pack to various abusive conditions can provide valuable insight during the design phase and reduce the need for physical testing.
However, the physics under such simulations is quite complex, and involves structural, thermal, electrical and electrochemical behaviors all coupled together and spanning length and time scales of different orders of magnitude.
In this talk, ANSYS LS-DYNA’s capabilities in the area of battery simulation will be introduced, current numerical challenges discussed, as well as a potential way forward towards including battery models in full car crash simulations.
This webinar will focus on the following key topics:
• The state of battery crash simulations
• Numerical challenges
• Capabilities of the commercial finite element code in ANSYS LS-DYNA
• A path towards capturing the thermal/mechanical/electromagnetic behavior of batteries during a full vehicle crash
Presenter
Inaki Caldichoury – Software Developer at ANSYS
Inaki has been with ANSYS as a Software Developer since 2011, with a special focus on LS-DYNA and the electromagnetic and CFD solvers.
Buy Now