
Avoid Battery Explosions and Fires – With Right Data and Better Designs
Modern Li Ion batteries contain hazardous chemicals and heat up during use – this combination always has the potential to cause fires and explosions. This presentation will focus on improving the understanding of how such incidents occur, what can be done to avoid them and how the risk can be minimized during early stage design.
The solution lies in knowledge of the heat generation rate during normal use, and information about safe boundaries such as temperature, discharge rate & overcharge in realistic situations that represent actual conditions of use. Data from commercial batteries of different types, including videos of batteries undergoing thermal runaway, will be used to illustrate these points.
A relatively new technique will also be discussed with data, which allows total heat output during discharge to be measured on-line and this can be used both for design and battery modelling. Examples of the data will be provided.
This webinar will focus on the following key topics:
• Why battery fires and explosions occur
• How to design safer batteries through understanding of heat generation
• Video evidence of batteries under explosive conditions
• How better thermal management systems can be designed – based on heat measurement from isothermal calorimetry
• Laboratory instruments suitable for testing and data generation
Presenter
Dr. Jasbir Singh – Managing Director at Hazard Evaluation Laboratory
Jasbir is a chemical engineer specializing in thermal hazards and calorimetry, traditionally for the chemical industry but now increasingly involved in battery safety, especially Li-ion EV and related types.
A graduate of Imperial College (London), where he undertook PhD into combustion and explosions, his experience includes many years in process design for the chemical and petrochemical industries. He is currently developing test methods and instruments for use in design of battery thermal management systems.
Buy Now

Solid Electrolytes and Bulk Scale Solid-State Batteries
Recently, the push to move beyond Li – ion battery technology has grown. Several advanced battery technologies & chemistries have been identified as promising candidates including i) solid-state batteries with Li metal anode, ii) Li – S chemistries, iii) Li – air(oxygen), and iv) flow batteries. Although an engineered solution using liquids may be possible for some of these options, a solid electrolyte is an enabling technology for each of these beyond Li – ion alternatives. This webinar will introduce the operating principles of each of these cell technologies and solid electrolytes will be discussed in this context. The requirements of a solid electrolyte will be outlined & several state of the art solid electrolytes will be compared. Recent technical progress towards the fabrication of solid-state batteries will be reviewed. Finally, an overview of market applications for solid-state will be presented.
This webinar will focus on the following key topics:
• Overview of beyond Li – ion battery technologies enabled by solid electrolytes
• Comparison of state of the art solid electrolytes
• Recent technical progress towards solid-state batteries
• Review of market applications for solid-state batteries
Presenter
Travis Thompson – Post Doctorate Research Fellow at University of Michigan
Travis received his B.S. in Mechanical Engineering in 2010 from California State Polytechnic University, Pomona, and his PhD in Materials Science at Michigan State University in 2014. His graduate work has focused on synthesis & processing of materials for direct thermal-to-electric energy conversion & storage. This includes ambient drying of silica aerogels, processing of oxide based thermoelectric materials, & electrochemical characterization of ceramic solid electrolytes for advanced batteries. He is now a Research Fellow at The University of Michigan and is exploring commercialization of Solid-State Batteries from his graduate work.
Buy Now

Recycling of Lithium Ion Batteries From Electric Vehicles
The recycling of lithium-ion batteries – from EVs and others – will be discussed in this webinar.
Recently, the pilot plant of project LithoRec II could prove that a newly developed combination of process steps enables the recovery of a mass fraction of 75 % and more on a material recycling basis from lithium-ion batteries. This is supposed to be much better than state of the art. Combining different process steps like discharging, dismantling, shredding, sifting and air-jet separation the project partners were able to achieve their goal: proving that lithium-ion batteries can be recycled better. One interesting process dealing with the electrolyte came in a black box (which was actually white) and this was because of another ongoing patenting process of Lion Engineering. A modified and simplified process works to directly recycle scraps from the production of lithium-ion batteries – in order to protect both: the environment and the stakeholder’s money.
This webinar will focus on the following key topics:
• Recycling of Lithium Ion Batteries
• Recycling Yields and how to regain 75% and more – on a material recycling basis
• Direct Recycling of LIB-Production Scraps
Presenter
Christian Hanisch – CEO at Lion Engineering
Christian studied Process Engineering at TU Braunschweig (Germany) and has worked in the research project LithoRec and designed LithoRec II at the Institute for Particle Technology / TU Braunschweig on the topic of Recycling of Lithium Ion Batteries. He developed and patented new recycling processes and led the project to the realization of a pilot plant. Recognizing the highest interest of industrial partners in this topic he co-founded the spin-off Lion Engineering GmbH with fellow PhD students and Professor Arno Kwade in 2011. Beginning in 2016, Christian started to focus full-time on being CEO of Lion Engineering.
Buy Now

Finding Your Place as the Industry Doubles Down on Electrified Vehicles
Sales are moving forward, primarily due to the Tesla Model 3. A raft of new vehicles is arriving in 2019. Besides the plug-ins and battery electrics, hybrids (including 48V and stop/start micro hybrids) are coming.
Is it a response to regulatory policy? Yes. Is regulatory policy unclear? Yes. Are some companies leaders and others laggards? Yes. Is the supply base critical to product development? Yes. Automakers are setting their own positions as they try to understand the threats and opportunities in their key global markets, even as the regulatory situation becomes more muddled.
This webinar will focus on the following key topics:
• Current Sales Trends Regarding EVs and Hybrids
• EPA/NHTSA vs. The Automakers!?
• California, EU, and China March Forward
• Strategies in Near-, Medium-, and Long-Term for Supplier and Automaker
Presenter
Alan Baum – Principal, Baum & Associates
Alan Baum formed Baum & Associates in August 2009. The company produces a detailed sales forecast and product life cycle for hybrid and electric vehicles. Baum has experience analyzing the impact of alternative fuel vehicles as well as advanced technologies in internal combustion engines that provide improved fuel economy. Since the 1980s, Baum has produced an automotive production forecast and detailed analysis of the automotive market. He has experience in the area of fuel economy and emissions regulation, the impact of fuel prices, & the market for hybrid and electric vehicles.
Buy Now