-

Electrochemical Impedance Spectroscopy and Its Application to Battery Analysis
Electrochemical Impedance Spectroscopy (EIS) is a well-established experimental technique that has applications in coatings, corrosion, sensors, electrochemical double layer capacitors, batteries among others. The power of EIS partly comes from its ability to access a very wide range of frequencies (typically from MHz to μHz). For batteries, parameters such as the internal resistance, electrode surface capacitance and leakage are accessible at different frequencies across the spectrum. This allows EIS to gather all the relevant information with a single measurement. In this webinar, we will briefly introduce EIS and cover its application to batteries. We will talk about how to analyze typical data and how to gather the relevant information. We will further talk about available instrumentation and their limitations.
This webinar will focus on the following key topics:
• What is impedance spectroscopy?
• What can impedance spectroscopy do for Battery analysis?
• How can capacitance, internal resistance and leakage be determined using EIS?
• What are the instrumental requirements and limits?
Presenter
Chris Beasley – Gamry Instruments
Chris Beasley received a BS in Chemistry from Kutztown University in 2000 and got a PhD in electrochemistry from University of North Carolina at Chapel Hill in 2010. His doctoral dissertation was on using redox-active nanoparticles as supercapacitors. Chris joined Gamry Instruments in 2010.
Buy Now
-

Stability of Li7La3Zr2O12 Garnet Solid-State Electrolyte Against Metallic Lithium
Energy storage demands will require safer, cheaper and higher performance electrochemical energy storage. While the primary strategy for improving performance has focused on state-of-the-art Li-ion batteries, this work seeks to develop solid-state batteries employing metallic Li anode. Recently, the ceramic electrolyte, Li7La3Zr2O12 (LLZO) cubic garnet, has shown promise owing to its unique combination of properties such as high Li-ion conductivity and electrochemical stability. Generally, LLZO is synthesized through powder processing and sintering at high temperature to produce dense membrane. Processing of the ceramic materials produces internal and surface flaws which will inhibit lithium transport creating localized current density and control the stability against Li dendrite propagation. This presentation will discuss new improvement in methodology to evaluate the integrity of LLZO membrane.
This webinar will focus on the following key topics:
• Methodology to evaluate the integrity of LLZO by identifying the microstructural flaws and their impact on mechanical properties
• DC cycling, EIS, XPS will be shown to determine the reactions that govern the maximum current density
• Correlate the electrochemical stability and critical current density with defects in polycrystalline solid state LLZO electrolyte
Presenter
Asma Sharafi – PhD Student with Jeff Sakamoto at University of Michigan
Asma received her MS in Chemistry (material science) in 2013 at University of Georgia. Currently, she is a PhD student in Mechanical Engineering at University of Michigan under Jeff Sakamoto’s supervision. The primary focus of her research is on the development of new solid state electrolyte (SSE) with the garnet structure (Li7La3Zr2O12) that offer unprecedented safety and durability.
Buy Now
-

Preventing Thermal Runaway in Energy Storage Systems (ESS)
From air transportation to electric vehicles and most recently “Hover Boards”, our industry is painfully aware of the over-discharge malfunctions associated with high-energy lithium-ion batteries, yet according to recent studies, nearly 70% of all Energy Storage Systems currently deployed are lithium-ion. Avoiding the pitfalls of utilizing greater energy density in larger installations is what will be discussed. Michelle will walk through the recent innovations from materials and process tracking in battery manufacturing to comprehensive control of cells in a fully deployed system. Incorporating lessons learned from recent failure investigations by the NTSB and FAA as well as new DoE mandates, Michelle will discuss how to achieve and in some areas surpass the new emerging safety certifications for a multi-megawatt energy storage system.
This webinar will focus on the following key topics:
• Making batteries safe or making safe batteries? (control & mitigation)
• Cell manufacture tracking, certification and response
– NTSB & DoE analysis and current situation
• Incorporating advanced battery management systems (BMS)
– Active cell dynamic balancing
– Cell replacement (hot-swapping)
– System reconfiguration
– Energy density scalability
Presenter
Michelle Klassen – VP of Business Development at Pathion, Inc.
Michelle Klassen is VP of Business Development for PATHION Inc. which manufactures high-performance, safe, and reliable Energy Storage Systems (ESS) for commercial markets ranging from 86 kilowatt-hours in stand-alone systems to over 1 megawatt-hour in containerized units. Prior to PATHION, as Vice President at ZeroBase Energy, she led the design and implementation of power systems and micro-grids for customers, including the US Department of Defense, Kenya Ministry of Energy and the L.A. Department of Water and Power.
Buy Now
-

Solid Electrolytes and Bulk Scale Solid-State Batteries
Recently, the push to move beyond Li – ion battery technology has grown. Several advanced battery technologies & chemistries have been identified as promising candidates including i) solid-state batteries with Li metal anode, ii) Li – S chemistries, iii) Li – air(oxygen), and iv) flow batteries. Although an engineered solution using liquids may be possible for some of these options, a solid electrolyte is an enabling technology for each of these beyond Li – ion alternatives. This webinar will introduce the operating principles of each of these cell technologies and solid electrolytes will be discussed in this context. The requirements of a solid electrolyte will be outlined & several state of the art solid electrolytes will be compared. Recent technical progress towards the fabrication of solid-state batteries will be reviewed. Finally, an overview of market applications for solid-state will be presented.
This webinar will focus on the following key topics:
• Overview of beyond Li – ion battery technologies enabled by solid electrolytes
• Comparison of state of the art solid electrolytes
• Recent technical progress towards solid-state batteries
• Review of market applications for solid-state batteries
Presenter
Travis Thompson – Post Doctorate Research Fellow at University of Michigan
Travis received his B.S. in Mechanical Engineering in 2010 from California State Polytechnic University, Pomona, and his PhD in Materials Science at Michigan State University in 2014. His graduate work has focused on synthesis & processing of materials for direct thermal-to-electric energy conversion & storage. This includes ambient drying of silica aerogels, processing of oxide based thermoelectric materials, & electrochemical characterization of ceramic solid electrolytes for advanced batteries. He is now a Research Fellow at The University of Michigan and is exploring commercialization of Solid-State Batteries from his graduate work.
Buy Now