-

Maximizing Battery Performance and Reliability for Electric Vehicles and Energy Storage
FREE Webinar – Voltaiq is a proud sponsor of this event.
As automakers and utilities transition away from non-renewable energy sources, batteries have become essential for efficient energy storage and delivery. Companies are working intensely to deliver higher capacity and more robust batteries to power their products, but ad hoc development processes cannot keep pace with the volume of battery data being generated. In addition, understaffed battery development teams are unable to leverage their data to accelerate development or improve production and manufacturing.
In this webinar, we will outline the challenges that the battery industry is facing and how big data analytics can virtually eliminate manual data management and provide powerful capabilities that deliver rapid insights into a battery’s design that dramatically accelerate the development process and results in products with greater performance and reliability.
This webinar will focus on the following key topics:
• Recognizing the challenges and bottlenecks in battery development today
• Automating the battery data collection, data cleaning, and data management process
• Identifying design issues earlier with predictive analytics
• Leveraging metadata to understand the impact of materials, processes and test conditions
Presenter
Dr. Tal Sholklapper – Co-Founder and CEO at Voltaiq
Dr. Tal Sholklapper is a co-founder of Voltaiq and serves as the company’s Chief Executive Officer. Before co-founding Voltaiq, Dr. Sholklapper was the lead engineer on a DOE ARPA-E funded project at the CUNY Energy Institute, developing an ultra-low-cost grid-scale battery. Prior to his work at CUNY, Tal co-founded Point Source Power, a low-cost fuel-cell startup based on technology he developed while at Lawrence Berkeley National Laboratory (LBNL) and UC Berkeley. Dr. Sholklapper has a BS in Physics and Applied Mathematics and an MS and PhD in Materials Science and Engineering from UC Berkeley.
Buy Now
-

Beyond Electrochemical Analysis – 2D to 4D Correlation of Microstructure and Chemistry in Li-ion Batteries
Single imaging instruments as well as correlative microscopy workflows have demonstrated some unique abilities to support LIB research beyond electrochemical analysis methods. Light microscopy delivers insights about ablation effects & phase orientations in the active material, while scanning electron microscopy (SEM) reveals information about aging effects, nanometer cracks & the composition of the active material. Combining SEM with in-situ Raman spectroscopy extends the traditional SEM capabilities to organic and inorganic material identification. X-ray microscopy, furthermore, delivers 3D non-destructive imaging of full battery packs and localized high-resolution information, thus allowing the identification of regions of interest within the battery material volume. This presentation will demonstrate the application of these techniques to Li-ion battery research, including examples on anode, cathode, binder, and separator materials.
This webinar will focus on the following key topics:
• Introduction to available microscopic investigation techniques
for Li-ion battery research:
– Light Microscopy
– Scanning Electron Microscopy
– X-ray Microscopy
– Raman Spectroscopy
• Review of recent battery imaging studies in published literature
• Case studies on using correlative microscopy to characterize battery performance & failure mechanisms
Presenter
Stefanie Freitag – Market Segment Manager at Carl Zeiss
Stefanie is Market Segment Manager in Materials Research at Carl Zeiss Microscopy in Munich. She holds a Diploma in Engineering Physics, gained first work experiences in a nuclear fusion reactor with a pioneering concept in Greifswald, then worked 3 years in the solar industry in Ulm & Hsinchu, Taiwan. In her current position she analyzes and defines new microscopic solutions for specific materials segments including light microscopy, electron microscopy, x-ray microscopy and chemical methods like Raman spectroscopy.
Buy Now
-

Energy Storage RTE Tutorial Course 1/3: What is Round Trip Efficiency (RTE)? Why is it Important? How Much Does it Cost?
In the first of this three-part webinar series, a definition of RTE will be presented along with simple system equations that are important to its understanding, determination and management. RTE for some popular battery systems i.e. Lead Acid, Lithium Ion, Vanadium Redox and Nickel Zinc will be computed as examples, and their variation with common variables such as rate, capacity variability & SOC swing will be discussed. The costs of Round Trip inefficiency can be significant, and are experienced by customers either in higher energy generating capital costs and/or higher operating expenses. The calculation of these higher costs will be reviewed, and there will be a discussion on the key industry variables that influence them. Different geographic and customer markets will be considered.
This webinar will focus on the following key topics:
• The Importance of RTE to battery selection decisions
• How does RTE impact CAPEX and/or OPEX for energy storage
• How is RTE defined and how can it be derived – comparison of different systems
• An introduction to ancillary equipment energy losses
Presenter
Dr. Halle Cheeseman – Founder/President at Energy Blues LLC
Dr. Halle Cheeseman earned a PhD in Electrochemistry & Corrosion from the University of Nottingham in UK, graduating in 1985. She has held several executive positions in the battery industry over the past 32 years, including Sr. VP of R&D at Spectrum Brands and VP of R&D at Exide Technologies. Her specific battery experience includes Lithium Ion, Zinc Air, Nickel Metal Hydride, Nickel Iron, Alkaline and Lead Acid, focusing on Consumer, Industrial, Automotive & Renewable Energy applications. In July 2017, Dr. Cheeseman founded Energy Blues LLC, an energy storage consulting cooperative comprising 20+ subject matter experts.
Buy Now
-

Electrochemical Impedance Spectroscopy and Its Application to Battery Analysis
Electrochemical Impedance Spectroscopy (EIS) is a well-established experimental technique that has applications in coatings, corrosion, sensors, electrochemical double layer capacitors, batteries among others. The power of EIS partly comes from its ability to access a very wide range of frequencies (typically from MHz to μHz). For batteries, parameters such as the internal resistance, electrode surface capacitance and leakage are accessible at different frequencies across the spectrum. This allows EIS to gather all the relevant information with a single measurement. In this webinar, we will briefly introduce EIS and cover its application to batteries. We will talk about how to analyze typical data and how to gather the relevant information. We will further talk about available instrumentation and their limitations.
This webinar will focus on the following key topics:
• What is impedance spectroscopy?
• What can impedance spectroscopy do for Battery analysis?
• How can capacitance, internal resistance and leakage be determined using EIS?
• What are the instrumental requirements and limits?
Presenter
Chris Beasley – Gamry Instruments
Chris Beasley received a BS in Chemistry from Kutztown University in 2000 and got a PhD in electrochemistry from University of North Carolina at Chapel Hill in 2010. His doctoral dissertation was on using redox-active nanoparticles as supercapacitors. Chris joined Gamry Instruments in 2010.
Buy Now