-

Key Trends, Recent Developments and ‘What’s Next’ for Energy Storage?
Billions of dollars have recently been invested into advanced energy storage systems initiatives globally. These include further development of R&D and manufacturing advancements in xEV batteries, stationary power systems, “beyond lithium” technologies, and more. NextEnergy will share some knowledge gained through its suite of venture support services, including access to funding opportunities, & in-depth value chain and market analyses, based on primary & secondary research.
This webinar will highlight some key market and R&D trends, key innovators in the energy storage space, and take a high-level look at other initiatives influencing “what’s next” in the field of advanced energy storage, with an emphasis on Li Ion batteries for automotive applications.
This webinar will focus on the following key topics:
• NextEnergy’s capabilities, and a sneak preview of NextEnergy’s Li Ion battery value chain. This work is primarily focused on automotive applications
• Key general trends in the energy storage sector, in terms of manufacturing, R&D, and market trends
• A brief review of select early stage companies offering innovative solutions to the energy storage community
• Select novel R&D initiatives in the Li Ion and “beyond lithium ion” spaces will be presented, at a high-level, and “what’s next” in energy storage systems will be addressed
Presenter
Kelly Jezierski – Energy Storage Manager, NextEnergy
Kelly Jezierski has been with NextEnergy for over 7 years. NextEnergy is one of the nation’s leading accelerators of advanced energy technologies, businesses and industries. Kelly is leading a joint initiative funded by the US Department of Commerce and Michigan Economic Development Corporation (MEDC) to foster growth in the advanced energy storage cluster and fill gaps in the domestic supply chain. Kelly holds a Bachelor of Science degree in Chemical Engineering and a Master of Science degree in Alternative Energy Technologies degrees, both from Wayne State University.
Buy Now
-

Recycling of Lithium Ion Batteries From Electric Vehicles
The recycling of lithium-ion batteries – from EVs and others – will be discussed in this webinar.
Recently, the pilot plant of project LithoRec II could prove that a newly developed combination of process steps enables the recovery of a mass fraction of 75 % and more on a material recycling basis from lithium-ion batteries. This is supposed to be much better than state of the art. Combining different process steps like discharging, dismantling, shredding, sifting and air-jet separation the project partners were able to achieve their goal: proving that lithium-ion batteries can be recycled better. One interesting process dealing with the electrolyte came in a black box (which was actually white) and this was because of another ongoing patenting process of Lion Engineering. A modified and simplified process works to directly recycle scraps from the production of lithium-ion batteries – in order to protect both: the environment and the stakeholder’s money.
This webinar will focus on the following key topics:
• Recycling of Lithium Ion Batteries
• Recycling Yields and how to regain 75% and more – on a material recycling basis
• Direct Recycling of LIB-Production Scraps
Presenter
Christian Hanisch – CEO at Lion Engineering
Christian studied Process Engineering at TU Braunschweig (Germany) and has worked in the research project LithoRec and designed LithoRec II at the Institute for Particle Technology / TU Braunschweig on the topic of Recycling of Lithium Ion Batteries. He developed and patented new recycling processes and led the project to the realization of a pilot plant. Recognizing the highest interest of industrial partners in this topic he co-founded the spin-off Lion Engineering GmbH with fellow PhD students and Professor Arno Kwade in 2011. Beginning in 2016, Christian started to focus full-time on being CEO of Lion Engineering.
Buy Now
-

Advanced Techniques For Addressing Issues in Battery Safety and Performance Using Adiabatic Calorimetry
FREE Webinar – THT is a proud sponsor of this event.
Adiabatic calorimetry is a widely utilized technique within the field of battery safety research. The method has been adapted from the chemical industry to address a significant range of safety and performance tests on battery components, cells and even modules.
Although a number of different battery tests may be employed using the ARC, interpretation of results is not always straightforward. Some of the principles which apply to ARC chemical testing do not translate directly to battery testing due to the variable nature of samples.
This presentation describes both the advantages and limitations of ARC testing on batteries and how the ARC test can be adapted to address different questions in battery research as well as quality control.
This webinar will focus on the following key topics:
• The principles of adiabatic calorimetry (ARC)
• How calorimetry can be used in battery testing
• What we learn from battery testing by calorimetry
• Pressure measurement and gas collection during thermal runaway
• Advanced testing techniques in adiabatic battery calorimetry
Presenter
Danny Montgomery – Technical Performance Manager at THT
Danny Montgomery joined THT in 2009 after graduating from Southampton University with a master’s degree in physics. His current role as Technical Performance Manager involves running the calorimetry lab with involvement in technical aspects of THT’s instrumentation.
Danny’s focus is primarily on lithium battery calorimetry; both adiabatic and isothermal. He oversees the use of calorimeters for customer sample testingas well as installing calorimeter systems and provided training and technical supportfor battery and automotive companies worldwide, such as Panasonic, BMW and Samsung. Danny works in THT’s UK office in Milton Keynes.
Buy Now
-

Battery Safety Assessment: From Cell to Pack Level
FREE Webinar – PlugVolt is a proud sponsor of this event.
For fast and reliable battery pack development, a virtual assessment of battery safety via simulation is presented. The methodology, from single cell abuse testing up to battery pack simulation of crash and crush loads, is discussed. Cell tests that provide detailed understanding of the mechanical behavior of single Li-ion cells are used to improve battery stiffness and to optimize battery pack design.
This webinar will focus on the following key topics:
• Method description: battery safety assessment from cell to pack level
• Abuse cell tests
• Abuse cell simulations
• Crash and crush simulations at module and pack levels
Presenter
Jeremy Gaume – Project Manager, Analysis of Engineering and Technology Powertrain Systems at AVL GmbH
Jeremy Gaume graduated from the University of Technology of Belfort-Montbeliard (U.T.B.M.), France, with a Master Diploma in thermo-mechanical system modelling and optimization. He has 10 years’ of experience in the automotive field. Before joining AVL, he worked at Magna Steyr for CAE crash (passive safety) assessment. After joining AVL, he was appointed as a Project Manager for Analysis of Engineering and Technology Powertrain Systems. Jeremy is an expert on crash/safety simulation for batteries.
Buy Now