
Battery Ageing – How Modeling is Used to Predict Battery Life
Battery modeling and simulation makes it possible to analyze multiple operating conditions and design parameters for batteries and other electrochemical systems and processes. By developing mathematical models you can begin to understand the interaction of electrochemical and chemical processes in the battery and how these processes affect the performance and life of the battery.
In this presentation, we will take a look at the benefits of modeling and simulation in the design, selection, and operation of a lithium-ion battery. We will especially take a look at how modeling can be used together with testing. These results provide manufacturers and application experts with the data to not only predict battery life but to analyze the implications of design parameters and operating conditions to better understand the limitation of the battery.
This webinar will focus on the following key topics:
• Benefits of modeling and simulations in the design, selection, and operation of a lithium-ion battery
• Implications of design parameters and operating conditions with respect to experimental observations of battery performance, aging, and battery safety
• How battery modeling can be used together with testing
Presenter
Tom O’Hara – Global Business Manager, Intertek
Tom O’Hara is the global business manager / advisory services for Intertek’s energy storage programs. Aside from his consulting role, Tom supports U.S. and European marketing and sales efforts and APAC CTIA certification efforts. As a 30-year veteran of the battery technology field, Tom has worked in Energizer Battery’s R&D sector and consulted with several start-up battery companies. He is also the co-inventor of the world’s first successful mercury-free zinc air button cell and holds seven U.S. patents. He obtained both a B.S. and M.S. in chemistry from Wake Forest University in North Carolina.
Buy Now

Beyond Electrochemical Analysis – 2D to 4D Correlation of Microstructure and Chemistry in Li-ion Batteries
Single imaging instruments as well as correlative microscopy workflows have demonstrated some unique abilities to support LIB research beyond electrochemical analysis methods. Light microscopy delivers insights about ablation effects & phase orientations in the active material, while scanning electron microscopy (SEM) reveals information about aging effects, nanometer cracks & the composition of the active material. Combining SEM with in-situ Raman spectroscopy extends the traditional SEM capabilities to organic and inorganic material identification. X-ray microscopy, furthermore, delivers 3D non-destructive imaging of full battery packs and localized high-resolution information, thus allowing the identification of regions of interest within the battery material volume. This presentation will demonstrate the application of these techniques to Li-ion battery research, including examples on anode, cathode, binder, and separator materials.
This webinar will focus on the following key topics:
• Introduction to available microscopic investigation techniques
for Li-ion battery research:
– Light Microscopy
– Scanning Electron Microscopy
– X-ray Microscopy
– Raman Spectroscopy
• Review of recent battery imaging studies in published literature
• Case studies on using correlative microscopy to characterize battery performance & failure mechanisms
Presenter
Stefanie Freitag – Market Segment Manager at Carl Zeiss
Stefanie is Market Segment Manager in Materials Research at Carl Zeiss Microscopy in Munich. She holds a Diploma in Engineering Physics, gained first work experiences in a nuclear fusion reactor with a pioneering concept in Greifswald, then worked 3 years in the solar industry in Ulm & Hsinchu, Taiwan. In her current position she analyzes and defines new microscopic solutions for specific materials segments including light microscopy, electron microscopy, x-ray microscopy and chemical methods like Raman spectroscopy.
Buy Now

Preventing Li Ion Battery Failures From a Manufacturing and Design Perspective
How can you be proactive and make sure your cell supplier is the right one and you don’t end up with thermal events and field failures? Is it enough to qualify a cell manufacturer according to industry standards? The answer is that the majority of compliance based testing is related to abuse tolerance. However, the vast majority of field failures do not occur under abuse scenarios, but happen under normal operating conditions due to manufacturing flaws or design and system tolerance issues that cause internal shorts. In this webinar, you will learn about common lithium ion battery failure modes and how to be proactive in preventing these.
This webinar will focus on the following key topics:
• Gain an understanding of lithium ion battery failure mechanisms and the pathway to thermal events
• Learn how cell design impacts battery safety and reliability
• Learn the basic steps in a lithium ion cell manufacturing process, and how the process controls affect safety and reliability
• Come away with a checklist to qualify your cell manufacturer
Presenter
Vidyu Challa – Technical Director at DfR Solutions
Vidyu Challa is Technical Director at DfR Solutions where she works on battery reliability and safety issues. Dr. Challa helps customers with their battery challenges including design reviews, manufacturing audits and supplier qualification. She obtained a PhD from CALCE Electronic Products and Systems Center at the
University of Maryland. She has broad based expertise that includes engineering technology start-up experience, product development, R&D, and business development. Dr. Challa has published her work in journals, presented at conferences and written blog articles.
Buy Now