-

Avoid Battery Explosions and Fires – With Right Data and Better Designs
Modern Li Ion batteries contain hazardous chemicals and heat up during use – this combination always has the potential to cause fires and explosions. This presentation will focus on improving the understanding of how such incidents occur, what can be done to avoid them and how the risk can be minimized during early stage design.
The solution lies in knowledge of the heat generation rate during normal use, and information about safe boundaries such as temperature, discharge rate & overcharge in realistic situations that represent actual conditions of use. Data from commercial batteries of different types, including videos of batteries undergoing thermal runaway, will be used to illustrate these points.
A relatively new technique will also be discussed with data, which allows total heat output during discharge to be measured on-line and this can be used both for design and battery modelling. Examples of the data will be provided.
This webinar will focus on the following key topics:
• Why battery fires and explosions occur
• How to design safer batteries through understanding of heat generation
• Video evidence of batteries under explosive conditions
• How better thermal management systems can be designed – based on heat measurement from isothermal calorimetry
• Laboratory instruments suitable for testing and data generation
Presenter
Dr. Jasbir Singh – Managing Director at Hazard Evaluation Laboratory
Jasbir is a chemical engineer specializing in thermal hazards and calorimetry, traditionally for the chemical industry but now increasingly involved in battery safety, especially Li-ion EV and related types.
A graduate of Imperial College (London), where he undertook PhD into combustion and explosions, his experience includes many years in process design for the chemical and petrochemical industries. He is currently developing test methods and instruments for use in design of battery thermal management systems.
Buy Now
-

Addressing Engineering Challenges of Vehicle Electrification With Model-Based Systems Engineering
The concern for the environment and energy savings is changing the way we think about transportation. Wide spreading vehicle electrification – not only through Electric Vehicles (EV) and Hybrid Electric Vehicles (HEV), but also electrification in conventional vehicles – has become a common trend of the industry and the upcoming battlefield to install new leading positions. Accounting for costs, reliability, safety, performance, customer acceptance, infrastructure and design process makes manufacturers and suppliers facing new engineering challenges that need to be addressed in a very short time-frame.
Technologies used for electrification are causing a growing complexity in systems and components, and producing vehicles designed right, first, at reasonable costs make the implementation of collaborative mechatronic system simulation a decisive and mandatory step in the engineering process.
This webinar will focus on the following key topics:
• What are the global trends and challenges of vehicle electrification?
• What are the available technologies for reducing CO2 emissions?
• What are the benefits of stop & start and regenerative braking systems?
• How to characterize battery and optimize its thermal management?
• How do energy storage architectures impact battery aging?
Presenter
Himanshu Kalra – Application Engineer, Siemens
Himanshu Kalra is an Application Engineer with Siemens PLM Software. He graduated with his Masters of Science degree in Mechanical Engineering from Michigan Tech University and his Bachelors in Mechanical Engineering from Institute of Management and Technology, India. He works with Model Based Systems Engineering (MBSE) Simulation tools to model and analyze vehicle electrification strategies, including thermal management, battery characterization and the impacts on battery ageing. He also has an experience working with technologies used for reducing emissions on internal combustion engines.
Buy Now
-

Adding Intelligent Battery Management to Lead-Acid Energy Storage Systems
Lead batteries are resilient and have a low likelihood of catastrophic failure. However, their lifespan can be significantly reduced when operated outside of manufacturer specifications. The extension of lead battery life through active battery management is becoming a compelling value proposition for vendors of lead-based energy storage systems.
The evolving regulatory environment governing energy storage safety is also impacting how both lead and lithium chemistries are to be managed moving forward. Join Nuvation CEO Michael Worry to explore the reasons why active battery management is becoming adopted in large-scale lead battery applications, and how the changing regulatory environment is impacting lead-based energy storage.
This webinar will focus on the following key topics:
• Controlling off-gassing in vented and VRLA lead batteries
• Emerging functional safety regulations and UL 1973
• Using a BMS to reduce the levelized cost of energy
• Automating stack connection sequencing in a multi-stack ESS
• Lead-based energy storage system deployments
Presenter
Michael Worry – CEO at Nuvation Energy
Michael Worry founded Nuvation in 1997 and has grown the company into a thriving electronic products and engineering services firm with offices in Sunnyvale, California and Waterloo, Ontario Canada. He is the CEO of Nuvation Energy, a provider of battery management systems and engineering services for large-scale energy storage systems.
Buy Now
-

Solid Electrolytes and Bulk Scale Solid-State Batteries
Recently, the push to move beyond Li – ion battery technology has grown. Several advanced battery technologies & chemistries have been identified as promising candidates including i) solid-state batteries with Li metal anode, ii) Li – S chemistries, iii) Li – air(oxygen), and iv) flow batteries. Although an engineered solution using liquids may be possible for some of these options, a solid electrolyte is an enabling technology for each of these beyond Li – ion alternatives. This webinar will introduce the operating principles of each of these cell technologies and solid electrolytes will be discussed in this context. The requirements of a solid electrolyte will be outlined & several state of the art solid electrolytes will be compared. Recent technical progress towards the fabrication of solid-state batteries will be reviewed. Finally, an overview of market applications for solid-state will be presented.
This webinar will focus on the following key topics:
• Overview of beyond Li – ion battery technologies enabled by solid electrolytes
• Comparison of state of the art solid electrolytes
• Recent technical progress towards solid-state batteries
• Review of market applications for solid-state batteries
Presenter
Travis Thompson – Post Doctorate Research Fellow at University of Michigan
Travis received his B.S. in Mechanical Engineering in 2010 from California State Polytechnic University, Pomona, and his PhD in Materials Science at Michigan State University in 2014. His graduate work has focused on synthesis & processing of materials for direct thermal-to-electric energy conversion & storage. This includes ambient drying of silica aerogels, processing of oxide based thermoelectric materials, & electrochemical characterization of ceramic solid electrolytes for advanced batteries. He is now a Research Fellow at The University of Michigan and is exploring commercialization of Solid-State Batteries from his graduate work.
Buy Now
Leave a Reply
You must be logged in to post a comment.