-

Finding Your Place as the Industry Doubles Down on Electrified Vehicles
Sales are moving forward, primarily due to the Tesla Model 3. A raft of new vehicles is arriving in 2019. Besides the plug-ins and battery electrics, hybrids (including 48V and stop/start micro hybrids) are coming.
Is it a response to regulatory policy? Yes. Is regulatory policy unclear? Yes. Are some companies leaders and others laggards? Yes. Is the supply base critical to product development? Yes. Automakers are setting their own positions as they try to understand the threats and opportunities in their key global markets, even as the regulatory situation becomes more muddled.
This webinar will focus on the following key topics:
• Current Sales Trends Regarding EVs and Hybrids
• EPA/NHTSA vs. The Automakers!?
• California, EU, and China March Forward
• Strategies in Near-, Medium-, and Long-Term for Supplier and Automaker
Presenter
Alan Baum – Principal, Baum & Associates
Alan Baum formed Baum & Associates in August 2009. The company produces a detailed sales forecast and product life cycle for hybrid and electric vehicles. Baum has experience analyzing the impact of alternative fuel vehicles as well as advanced technologies in internal combustion engines that provide improved fuel economy. Since the 1980s, Baum has produced an automotive production forecast and detailed analysis of the automotive market. He has experience in the area of fuel economy and emissions regulation, the impact of fuel prices, & the market for hybrid and electric vehicles.
Buy Now
-

Recycling of Lithium Ion Batteries From Electric Vehicles
The recycling of lithium-ion batteries – from EVs and others – will be discussed in this webinar.
Recently, the pilot plant of project LithoRec II could prove that a newly developed combination of process steps enables the recovery of a mass fraction of 75 % and more on a material recycling basis from lithium-ion batteries. This is supposed to be much better than state of the art. Combining different process steps like discharging, dismantling, shredding, sifting and air-jet separation the project partners were able to achieve their goal: proving that lithium-ion batteries can be recycled better. One interesting process dealing with the electrolyte came in a black box (which was actually white) and this was because of another ongoing patenting process of Lion Engineering. A modified and simplified process works to directly recycle scraps from the production of lithium-ion batteries – in order to protect both: the environment and the stakeholder’s money.
This webinar will focus on the following key topics:
• Recycling of Lithium Ion Batteries
• Recycling Yields and how to regain 75% and more – on a material recycling basis
• Direct Recycling of LIB-Production Scraps
Presenter
Christian Hanisch – CEO at Lion Engineering
Christian studied Process Engineering at TU Braunschweig (Germany) and has worked in the research project LithoRec and designed LithoRec II at the Institute for Particle Technology / TU Braunschweig on the topic of Recycling of Lithium Ion Batteries. He developed and patented new recycling processes and led the project to the realization of a pilot plant. Recognizing the highest interest of industrial partners in this topic he co-founded the spin-off Lion Engineering GmbH with fellow PhD students and Professor Arno Kwade in 2011. Beginning in 2016, Christian started to focus full-time on being CEO of Lion Engineering.
Buy Now
-

Advancing Mining Processes to Make Better Materials for Use in Lithium Ion Batteries
American Manganese Inc has developed a low-cost, environmentally friendly hydrometallurgical process to recover manganese (Mn) from lower grade resources. American Manganese has applied for a patent for their hydrometallurgical process that produces electrolytic manganese metal with low energy and water consumption. American Manganese commissioned R&D contractor, Kemetco Research Inc to determine uses of Artillery Peak manganese resource material to generate high value alternative products. Chemical manganese dioxide (CMD) and lithiated manganese oxide (LixMn2O4) for use in rechargeable batteries were the areas researched.
The research was successful in producing CMD from Artillery Peak resource material with low cation impurities and avoiding processing steps that are known to introduce metallic impurities in the final product. Cation impurities cause capacity fade, whereas metallic impurities are known to cause catastrophic failures (such as fire and explosions) in lithium ion batteries. Working rechargeable lithium ion coin cell battery prototypes were produced from the CMD material.
This webinar will focus on the following key topics:
• Catastrophic failure of Li Ion batteries caused by metallic impurities that may be introduced from the mining of raw materials
• Conventional mining process to recover MnO2 used to make LiMn2O4
• Research on a new mining process that avoids steps known to introduce metallic impurities to recover MnO2 used to make LiMn2O4
Presenter
Norman Chow – President – Kemetco Research, Inc.
Norman earned a B.A.Sc. and M.A.Sc. in Metals and Materials Engineering from University of British Columbia. He is a Registered Professional Engineer (P. Eng.) in British Columbia. He has over 15 years of technology development and contract research experience. He is the President of Kemetco Research Inc., which he formed after acquiring the Industrial Process Division of BC Research Inc. BC Research had been in operation for over 60 years as an R&D contractor.
Buy Now
-

Adding Intelligent Battery Management to Lead-Acid Energy Storage Systems
Lead batteries are resilient and have a low likelihood of catastrophic failure. However, their lifespan can be significantly reduced when operated outside of manufacturer specifications. The extension of lead battery life through active battery management is becoming a compelling value proposition for vendors of lead-based energy storage systems.
The evolving regulatory environment governing energy storage safety is also impacting how both lead and lithium chemistries are to be managed moving forward. Join Nuvation CEO Michael Worry to explore the reasons why active battery management is becoming adopted in large-scale lead battery applications, and how the changing regulatory environment is impacting lead-based energy storage.
This webinar will focus on the following key topics:
• Controlling off-gassing in vented and VRLA lead batteries
• Emerging functional safety regulations and UL 1973
• Using a BMS to reduce the levelized cost of energy
• Automating stack connection sequencing in a multi-stack ESS
• Lead-based energy storage system deployments
Presenter
Michael Worry – CEO at Nuvation Energy
Michael Worry founded Nuvation in 1997 and has grown the company into a thriving electronic products and engineering services firm with offices in Sunnyvale, California and Waterloo, Ontario Canada. He is the CEO of Nuvation Energy, a provider of battery management systems and engineering services for large-scale energy storage systems.
Buy Now
Leave a Reply
You must be logged in to post a comment.