-

Key Trends, Recent Developments and ‘What’s Next’ for Energy Storage?
Billions of dollars have recently been invested into advanced energy storage systems initiatives globally. These include further development of R&D and manufacturing advancements in xEV batteries, stationary power systems, “beyond lithium” technologies, and more. NextEnergy will share some knowledge gained through its suite of venture support services, including access to funding opportunities, & in-depth value chain and market analyses, based on primary & secondary research.
This webinar will highlight some key market and R&D trends, key innovators in the energy storage space, and take a high-level look at other initiatives influencing “what’s next” in the field of advanced energy storage, with an emphasis on Li Ion batteries for automotive applications.
This webinar will focus on the following key topics:
• NextEnergy’s capabilities, and a sneak preview of NextEnergy’s Li Ion battery value chain. This work is primarily focused on automotive applications
• Key general trends in the energy storage sector, in terms of manufacturing, R&D, and market trends
• A brief review of select early stage companies offering innovative solutions to the energy storage community
• Select novel R&D initiatives in the Li Ion and “beyond lithium ion” spaces will be presented, at a high-level, and “what’s next” in energy storage systems will be addressed
Presenter
Kelly Jezierski – Energy Storage Manager, NextEnergy
Kelly Jezierski has been with NextEnergy for over 7 years. NextEnergy is one of the nation’s leading accelerators of advanced energy technologies, businesses and industries. Kelly is leading a joint initiative funded by the US Department of Commerce and Michigan Economic Development Corporation (MEDC) to foster growth in the advanced energy storage cluster and fill gaps in the domestic supply chain. Kelly holds a Bachelor of Science degree in Chemical Engineering and a Master of Science degree in Alternative Energy Technologies degrees, both from Wayne State University.
Buy Now
-

Battery Selection Tutorial Course 1/3: Selecting your Cell and Cell Manufacturer(s)
After designing your product, you need to ensure the battery with which you are operating it will ensure the right performance and lifetime. When deciding this, narrowing down which chemistry (e.g. Li-ion, lithium primary, NiMH, etc.) best fits your product and which form factor are some of the first steps. Choosing a cell design (high-power vs. high-energy, for example) is another step and finally, finding the right cell manufacturer to fabricate your cells and packs. This webinar is the first in a three-part series on designing the right battery for your product. It will cover many of the key differences in chemistries, form factors, and cell designs and other best practices.
This webinar will focus on the following key topics:
• Choosing the right chemistry for your application
• Choosing the right form factor
• Choosing cell designs (e.g. high power vs. high-energy)
Presenter
Exponent – a multidisciplinary engineering and scientific consulting firm with significant experience in various aspects of battery design, safety testing and failure analysis.
Buy Now
-

Battery Ageing – How Modeling is Used to Predict Battery Life
Battery modeling and simulation makes it possible to analyze multiple operating conditions and design parameters for batteries and other electrochemical systems and processes. By developing mathematical models you can begin to understand the interaction of electrochemical and chemical processes in the battery and how these processes affect the performance and life of the battery.
In this presentation, we will take a look at the benefits of modeling and simulation in the design, selection, and operation of a lithium-ion battery. We will especially take a look at how modeling can be used together with testing. These results provide manufacturers and application experts with the data to not only predict battery life but to analyze the implications of design parameters and operating conditions to better understand the limitation of the battery.
This webinar will focus on the following key topics:
• Benefits of modeling and simulations in the design, selection, and operation of a lithium-ion battery
• Implications of design parameters and operating conditions with respect to experimental observations of battery performance, aging, and battery safety
• How battery modeling can be used together with testing
Presenter
Tom O’Hara – Global Business Manager, Intertek
Tom O’Hara is the global business manager / advisory services for Intertek’s energy storage programs. Aside from his consulting role, Tom supports U.S. and European marketing and sales efforts and APAC CTIA certification efforts. As a 30-year veteran of the battery technology field, Tom has worked in Energizer Battery’s R&D sector and consulted with several start-up battery companies. He is also the co-inventor of the world’s first successful mercury-free zinc air button cell and holds seven U.S. patents. He obtained both a B.S. and M.S. in chemistry from Wake Forest University in North Carolina.
Buy Now
-

Energy Storage RTE Tutorial Course 1/3: What is Round Trip Efficiency (RTE)? Why is it Important? How Much Does it Cost?
In the first of this three-part webinar series, a definition of RTE will be presented along with simple system equations that are important to its understanding, determination and management. RTE for some popular battery systems i.e. Lead Acid, Lithium Ion, Vanadium Redox and Nickel Zinc will be computed as examples, and their variation with common variables such as rate, capacity variability & SOC swing will be discussed. The costs of Round Trip inefficiency can be significant, and are experienced by customers either in higher energy generating capital costs and/or higher operating expenses. The calculation of these higher costs will be reviewed, and there will be a discussion on the key industry variables that influence them. Different geographic and customer markets will be considered.
This webinar will focus on the following key topics:
• The Importance of RTE to battery selection decisions
• How does RTE impact CAPEX and/or OPEX for energy storage
• How is RTE defined and how can it be derived – comparison of different systems
• An introduction to ancillary equipment energy losses
Presenter
Dr. Halle Cheeseman – Founder/President at Energy Blues LLC
Dr. Halle Cheeseman earned a PhD in Electrochemistry & Corrosion from the University of Nottingham in UK, graduating in 1985. She has held several executive positions in the battery industry over the past 32 years, including Sr. VP of R&D at Spectrum Brands and VP of R&D at Exide Technologies. Her specific battery experience includes Lithium Ion, Zinc Air, Nickel Metal Hydride, Nickel Iron, Alkaline and Lead Acid, focusing on Consumer, Industrial, Automotive & Renewable Energy applications. In July 2017, Dr. Cheeseman founded Energy Blues LLC, an energy storage consulting cooperative comprising 20+ subject matter experts.
Buy Now