-

Energy Storage RTE Tutorial Course 1/3: What is Round Trip Efficiency (RTE)? Why is it Important? How Much Does it Cost?
In the first of this three-part webinar series, a definition of RTE will be presented along with simple system equations that are important to its understanding, determination and management. RTE for some popular battery systems i.e. Lead Acid, Lithium Ion, Vanadium Redox and Nickel Zinc will be computed as examples, and their variation with common variables such as rate, capacity variability & SOC swing will be discussed. The costs of Round Trip inefficiency can be significant, and are experienced by customers either in higher energy generating capital costs and/or higher operating expenses. The calculation of these higher costs will be reviewed, and there will be a discussion on the key industry variables that influence them. Different geographic and customer markets will be considered.
This webinar will focus on the following key topics:
• The Importance of RTE to battery selection decisions
• How does RTE impact CAPEX and/or OPEX for energy storage
• How is RTE defined and how can it be derived – comparison of different systems
• An introduction to ancillary equipment energy losses
Presenter
Dr. Halle Cheeseman – Founder/President at Energy Blues LLC
Dr. Halle Cheeseman earned a PhD in Electrochemistry & Corrosion from the University of Nottingham in UK, graduating in 1985. She has held several executive positions in the battery industry over the past 32 years, including Sr. VP of R&D at Spectrum Brands and VP of R&D at Exide Technologies. Her specific battery experience includes Lithium Ion, Zinc Air, Nickel Metal Hydride, Nickel Iron, Alkaline and Lead Acid, focusing on Consumer, Industrial, Automotive & Renewable Energy applications. In July 2017, Dr. Cheeseman founded Energy Blues LLC, an energy storage consulting cooperative comprising 20+ subject matter experts.
Buy Now
-

Determination of Battery Safety and Performance Parameters Using Adiabatic and Isothermal Calorimetry
FREE Webinar – Thermal Hazard Technology is a proud sponsor of this event.
This presentation describes two main types of calorimetry which can be used to carry out safety and performance testing on batteries. Isothermal calorimeters allow for direct heat measurement on cells during use, while adiabatic calorimeters can measure heat released from batteries during thermal runaway.
Calorimetry can serve as a quantitative scientific method for evaluation of battery safety but it requires appropriate instrumentation. The principles of operation of both types of calorimeters are described along with specific applications within the field of battery testing.
A combination of both technics allows for detailed thermal characterization of lithium-ion and other rechargeable cells, and differences due to chemistry, cell design, cell age, state of charge and cell size can be evaluated.
This webinar will focus on the following key topics:
• The principles of adiabatic and isothermal calorimetry
• How calorimetry can be used in battery testing
• Parameters established by adiabatic safety testing
• Parameters established by isothermal performance testing
• Pressure measurement and gas collection
Presenter
Danny Montgomery – Technical Performance Manager at Thermal Hazard Technology
Danny Montgomery has worked at Thermal Hazard Technology for 9 years. His current role is Technical Performance Manager; overseeing the lab and technical aspects of instrumentation manufactured by THT. He joined the company in 2009 after graduating from Southampton University with a master’s degree in physics.
Danny’s focus is primarily on lithium battery calorimetry; both adiabatic and isothermal. He oversees the use of calorimeters for customer sample testing as well as installing calorimeter systems and provided training for battery and automotive companies worldwide, such as Panasonic, BMW and Samsung. Danny works in Thermal Hazard Technology’s UK office in Milton Keynes.
Buy Now
-

Beyond Electrochemical Analysis – 2D to 4D Correlation of Microstructure and Chemistry in Li-ion Batteries
Single imaging instruments as well as correlative microscopy workflows have demonstrated some unique abilities to support LIB research beyond electrochemical analysis methods. Light microscopy delivers insights about ablation effects & phase orientations in the active material, while scanning electron microscopy (SEM) reveals information about aging effects, nanometer cracks & the composition of the active material. Combining SEM with in-situ Raman spectroscopy extends the traditional SEM capabilities to organic and inorganic material identification. X-ray microscopy, furthermore, delivers 3D non-destructive imaging of full battery packs and localized high-resolution information, thus allowing the identification of regions of interest within the battery material volume. This presentation will demonstrate the application of these techniques to Li-ion battery research, including examples on anode, cathode, binder, and separator materials.
This webinar will focus on the following key topics:
• Introduction to available microscopic investigation techniques
for Li-ion battery research:
– Light Microscopy
– Scanning Electron Microscopy
– X-ray Microscopy
– Raman Spectroscopy
• Review of recent battery imaging studies in published literature
• Case studies on using correlative microscopy to characterize battery performance & failure mechanisms
Presenter
Stefanie Freitag – Market Segment Manager at Carl Zeiss
Stefanie is Market Segment Manager in Materials Research at Carl Zeiss Microscopy in Munich. She holds a Diploma in Engineering Physics, gained first work experiences in a nuclear fusion reactor with a pioneering concept in Greifswald, then worked 3 years in the solar industry in Ulm & Hsinchu, Taiwan. In her current position she analyzes and defines new microscopic solutions for specific materials segments including light microscopy, electron microscopy, x-ray microscopy and chemical methods like Raman spectroscopy.
Buy Now
-

Stability of Li7La3Zr2O12 Garnet Solid-State Electrolyte Against Metallic Lithium
Energy storage demands will require safer, cheaper and higher performance electrochemical energy storage. While the primary strategy for improving performance has focused on state-of-the-art Li-ion batteries, this work seeks to develop solid-state batteries employing metallic Li anode. Recently, the ceramic electrolyte, Li7La3Zr2O12 (LLZO) cubic garnet, has shown promise owing to its unique combination of properties such as high Li-ion conductivity and electrochemical stability. Generally, LLZO is synthesized through powder processing and sintering at high temperature to produce dense membrane. Processing of the ceramic materials produces internal and surface flaws which will inhibit lithium transport creating localized current density and control the stability against Li dendrite propagation. This presentation will discuss new improvement in methodology to evaluate the integrity of LLZO membrane.
This webinar will focus on the following key topics:
• Methodology to evaluate the integrity of LLZO by identifying the microstructural flaws and their impact on mechanical properties
• DC cycling, EIS, XPS will be shown to determine the reactions that govern the maximum current density
• Correlate the electrochemical stability and critical current density with defects in polycrystalline solid state LLZO electrolyte
Presenter
Asma Sharafi – PhD Student with Jeff Sakamoto at University of Michigan
Asma received her MS in Chemistry (material science) in 2013 at University of Georgia. Currently, she is a PhD student in Mechanical Engineering at University of Michigan under Jeff Sakamoto’s supervision. The primary focus of her research is on the development of new solid state electrolyte (SSE) with the garnet structure (Li7La3Zr2O12) that offer unprecedented safety and durability.
Buy Now