-

Lithium Ion Capacitors – Combining Energy with Power
FREE Webinar – JSR Micro, Inc. is a proud sponsor of this event.
Lithium Ion Capacitors (LIC) are hybrids of electric double-layer capacitors (EDLCs) and lithium ion batteries (LIB). Combining the reversible non-Faradaic cathode from an EDLC and the reversible Faradaic anode from an LIB results in an ultra or super capacitor with significantly increased energy density, improved float performance and low self-discharge rates. Avoiding the lithium metal oxide cathodes from LIB’s improves the inherent safety and eliminates Cobalt content, however still combines aspects of energy & power of both cell types. The Faradaic intercalation/deintercalation reactions at the anode are capable of generating a significant amount of charge, while the non-Faradaic electrostatic storage of the electrical energy formed at the interface of the electrode and the electrolyte, known as an electric double layer, results in fast charge and discharge capabilities for hundreds of thousands, if not millions of cycles.
This webinar will focus on the following key topics:
• What is an LIC? Technology Introduction
• Key Benefits
• Safety
• EDLC vs LIC
• Applications
Presenter
Jeff Myron – Energy Solutions Program Manager at JSR Micro, Inc.
Since 2011 Jeff has been responsible for business development in North America of JSR group’s environmental energy products including, lithium ion capacitors (LIC) and aqueous battery binders. Jeff joined JSR in 2006 as a Technical Sales Specialist for advanced photoresists utilized in IC manufacturing. Immediately prior to JSR, Jeff worked at Molecular Imprints developing the commercial infrastructure for next generation nano imprint lithography templates. Prior to joining Molecular Imprints, he held various engineering, engineering management & product management positions at Motorola, DuPont Photomask & Brewer Science. Jeff earned a bachelor’s degree in chemistry from Illinois State University in 1990 and an MBA from Webster University in 2001.
Buy Now
-

Advanced Techniques For Addressing Issues in Battery Safety and Performance Using Adiabatic Calorimetry
FREE Webinar – THT is a proud sponsor of this event.
Adiabatic calorimetry is a widely utilized technique within the field of battery safety research. The method has been adapted from the chemical industry to address a significant range of safety and performance tests on battery components, cells and even modules.
Although a number of different battery tests may be employed using the ARC, interpretation of results is not always straightforward. Some of the principles which apply to ARC chemical testing do not translate directly to battery testing due to the variable nature of samples.
This presentation describes both the advantages and limitations of ARC testing on batteries and how the ARC test can be adapted to address different questions in battery research as well as quality control.
This webinar will focus on the following key topics:
• The principles of adiabatic calorimetry (ARC)
• How calorimetry can be used in battery testing
• What we learn from battery testing by calorimetry
• Pressure measurement and gas collection during thermal runaway
• Advanced testing techniques in adiabatic battery calorimetry
Presenter
Danny Montgomery – Technical Performance Manager at THT
Danny Montgomery joined THT in 2009 after graduating from Southampton University with a master’s degree in physics. His current role as Technical Performance Manager involves running the calorimetry lab with involvement in technical aspects of THT’s instrumentation.
Danny’s focus is primarily on lithium battery calorimetry; both adiabatic and isothermal. He oversees the use of calorimeters for customer sample testingas well as installing calorimeter systems and provided training and technical supportfor battery and automotive companies worldwide, such as Panasonic, BMW and Samsung. Danny works in THT’s UK office in Milton Keynes.
Buy Now
-

Data-Driven Battery Product Development: Turn Battery Performance Into a Competitive Advantage
FREE Webinar – Voltaiq, Inc. is a proud sponsor of this event.
Battery performance is a primary source of user dissatisfaction across a broad range of applications, and is the key bottleneck slowing the adoption of electric vehicles, renewable energy, and longer lasting, more powerful mobile electronics. Moreover, advances in battery development are continually slowed by inefficiencies and missed opportunities in analyzing the vast amounts of raw data generated during testing and operation, and the lack of effective tools to process and analyze this data.
In this webinar, we’ll present approaches to eliminate these data bottlenecks and explain how to leverage your information to help you ship quality products faster using fewer resources while ensuring safety and reliability in the field, ultimately turning battery performance into a competitive advantage.
This webinar will focus on the following key topics:
• What bottlenecks are hindering the development of new batteries and battery powered systems?
• What are your batteries trying to tell you? Expose additional value using techniques like differential capacity analysis
• Case studies on data-driven product development at each stage of the battery lifecycle: from R&D to operation in the field
Presenter
Tal Sholklapper – CEO and Co-founder at Voltaiq
Tal is the CEO and co-founder of Voltaiq, an battery intelligence software company. Prior to founding Voltaiq, he worked as the lead engineer on a DOE ARPA-E funded project at the CUNY Energy Institute, developing a ultra-low- cost grid-scale battery. Before joining CUNY, Dr. Sholklapper co-founded Point Source Power, a low-cost fuel-cell startup based on technology he developed while at Lawrence Berkeley National Laboratory (LBNL) and UC Berkeley. Dr. Sholklapper earned bachelors degrees in Physics and Applied Mathematics from UC Berkeley, going on complete a PhD in Materials Science and Engineering in just two and a half years.
Buy Now
-

DER Tutorial Course 1/3: Energy Storage and DER Control Behind the Meter
The implementation of distributed energy resources behind the meter has become increasingly commonplace for commercial, industrial, and even residential energy consumers. While energy security is often a key driver, it is demand charge management that provides the return on the infrastructure investment. DER aggregation and demand charge management technologies however, have not yet fully caught up with the relative maturity of the resources they control. Join John Chinnick, Principal Software Architect at Nuvation Energy for an examination of distributed energy resource management behind the meter, and how to integrate and manage DER assets for demand charge management.
This webinar will focus on the following key topics:
• Types and tiers of distributed energy resource management
• Technical constraints and opportunities in asset management
• Integrating energy resources for centralized control
• A demand charge management implementation model
Presenter
John Chinnick – Principal Software Architect at Nuvation Energy
John Chinnick is a Principal Software Architect at Nuvation Energy. His current role includes project management and engineering design for distributed energy resource (DER) control systems. He brings 28 years of product design experience to the energy storage industry, with a diverse skillset that includes embedded computing and industrial controls. His current projects include the deployment of automotive second life battery packs into containerized energy storage for grid firming, transmission and distribution upgrade deferral, and demand charge management.
Nuvation Energy is a proud sponsor of this event.
Buy Now