-

BMS Tutorial Course 2/3: Battery Stack Design for UL 1973 Certification
If you are developing a stationary energy storage system, chances are you have already heard of UL 1973 and UL 9540. Being certified to these important safety standards is quickly becoming the price of admission in the energy storage industry. When taking your battery stack design through the UL 1973 certification process, the level of effort is significantly impacted by the compliances and ratings of the individual components in your battery rack. Join Nate Wennyk, Senior Hardware Designer at Nuvation Energy, for an inside look at the development of UL 1973 Recognized battery stack solutions.
This webinar will focus on the following key topics:
• Understanding battery stack architecture
• Impacts of component certifications on the UL 1973 LOE
• Designing flexibility into a locked-down stack configuration
• UL 1973 Recognition case studies and engineering war stories
Presenter
Nate Wennyk – Senior Hardware Designer at Nuvation Energy
Nate Wennyk manages Nuvation Energy’s Device Hardware team, a group that develops battery management system hardware for small- and large-scale energy storage applications. His experience ranges from grid-tied residential, commercial and industrial (C&I) behind the meter platforms to front of the meter energy storage and specialty vehicle applications. Nate possesses extensive field experience and has been a key contributor to system integration and commissioning projects for storage systems across the United Sates as well as on remote islands. He is currently Senior Hardware Designer for Nuvation Energy’s next-generation BMS product research and development team.
Nuvation Energy is a proud sponsor of this event.
Buy Now
-

BMS Tutorial Course 1/3: Optimal Design Approaches to Battery Racks, Packs and Modules
There are several ways to reduce the cost of your battery stack design while maintaining high performance and reliability. Alex Ramji, Senior Hardware Designer at Nuvation Energy will present a variety of approaches for lowering the cost of battery control electronics through innovative module and rack design. He will share examples of module and stack configurations for different types of cells, and explain how they have been architected to meet target stack voltages, amperages, and ESS capacities.
This webinar will focus on the following key topics:
• The master/slave battery management system model
• Reducing BMS hardware through module, tray and stack design
• Battery stack solution examples
• Management of multiple stacks in parallel
Presenter
Alex Ramji – Senior Hardware Designer at Nuvation Energy
Alex Ramji manages Nuvation Energy’s Hardware Solutions team, a group that develops a range of battery management products for large-scale energy storage systems. He is the lead designer of integrated battery management solutions that simplify energy storage system development. He has designed stack-level battery management products, system-level control systems, and novel battery stack architectures. Alex brings a multidisciplinary skill set of both electrical and mechanical engineering to system design, and is a key contributor to Nuvation Energy’s megawatt-scale energy storage projects.
Nuvation Energy is a proud sponsor of this event.
Buy Now
-

How Battery Intelligence Can “Recession-Proof” Your Battery Program
FREE Webinar – Voltaiq is a proud sponsor of this event.
COVID-19 and the recession will separate winners from losers. Despite the current downturn, there are opportunities for automakers, consumer electronics OEMs, cell suppliers, and the broader battery ecosystem to adopt new tools and processes to survive the recession and come out on top. For the greater battery ecosystem, Voltaiq, the market leader in Battery Intelligence software, is helping companies adapt to the new normal for remote work, streamlined decision making, and organizational efficiency. This webinar will provide an overview of battery-specific challenges related to COVID-19, best practices highlighted by leading business publications, and real examples of how leading companies are using tools like Voltaiq to navigate the current storm, make gains on the competition, and ship product.
This webinar will focus on the following key topics:
• The impact of COVID-19 on battery development programs
• Recession as an opportunity to digitize your business while opportunity costs are lower
• How digital transformation can help companies thrive post-recession by increasing efficiency and resilience while streamlining decision-making
• Examples of how Battery Intelligence software is helping companies ship product during COVID-19
Presenter
Dr. Tal Sholklapper – CEO at Voltaiq
Dr. Tal Sholklapper has an extensive record of success as a cleantech engineer and entrepreneur. Prior to founding Voltaiq, he worked as the lead engineer on a DOE ARPA-E funded project at the CUNY Energy Institute, developing an ultra low-cost grid-scale battery. Before joining CUNY, Dr. Sholklapper co-founded Point Source Power, a low cost fuel-cell startup based on technology he developed while at Lawrence Berkeley National Laboratory and UC Berkeley, where he also did his graduate work in Materials Science and Engineering. As a Materials Postdoctoral Fellow at LBNL, he successfully led the transfer of lab-scale technology to industry partners.
Buy Now
-

Lithium Ion Capacitors – Combining Energy with Power
FREE Webinar – JSR Micro, Inc. is a proud sponsor of this event.
Lithium Ion Capacitors (LIC) are hybrids of electric double-layer capacitors (EDLCs) and lithium ion batteries (LIB). Combining the reversible non-Faradaic cathode from an EDLC and the reversible Faradaic anode from an LIB results in an ultra or super capacitor with significantly increased energy density, improved float performance and low self-discharge rates. Avoiding the lithium metal oxide cathodes from LIB’s improves the inherent safety and eliminates Cobalt content, however still combines aspects of energy & power of both cell types. The Faradaic intercalation/deintercalation reactions at the anode are capable of generating a significant amount of charge, while the non-Faradaic electrostatic storage of the electrical energy formed at the interface of the electrode and the electrolyte, known as an electric double layer, results in fast charge and discharge capabilities for hundreds of thousands, if not millions of cycles.
This webinar will focus on the following key topics:
• What is an LIC? Technology Introduction
• Key Benefits
• Safety
• EDLC vs LIC
• Applications
Presenter
Jeff Myron – Energy Solutions Program Manager at JSR Micro, Inc.
Since 2011 Jeff has been responsible for business development in North America of JSR group’s environmental energy products including, lithium ion capacitors (LIC) and aqueous battery binders. Jeff joined JSR in 2006 as a Technical Sales Specialist for advanced photoresists utilized in IC manufacturing. Immediately prior to JSR, Jeff worked at Molecular Imprints developing the commercial infrastructure for next generation nano imprint lithography templates. Prior to joining Molecular Imprints, he held various engineering, engineering management & product management positions at Motorola, DuPont Photomask & Brewer Science. Jeff earned a bachelor’s degree in chemistry from Illinois State University in 1990 and an MBA from Webster University in 2001.
Buy Now