-

Energy Storage RTE Tutorial Course 2/3: Ampere-Hour (Ah) RTE and Voltage Polarization Energy Losses
Many aqueous systems have water electrolysis to contend with, and above 70-80% SOC, RTE losses from this competing reaction can be significant. Management of these losses has been evolving for decades, and there are now tried and tested methods mostly related to charging algorithms & partial state of charge (pSOC) cycling. These methods will be reviewed. Relevant for every battery chemistry, Cell Voltage factors, will be separated into eight different components, four each, for the cathode and anode. These will be presented & described. The variables that affect them will be reviewed, including the effects of age & cycling and methods for their ongoing measurement. Techniques to reduce and mitigate polarization will be detailed & possible benefits will be quantified in terms of RTE & cost for different scenarios.
This webinar will focus on the following key topics:
• Ah Efficiency losses in aqueous systems
• Types of Voltage Polarization losses for all systems
• Strategies and plans for reducing & mitigating efficiency losses
• Improvement potential for different systems
Presenter
Dr. Halle Cheeseman – Founder/President at Energy Blues LLC
Dr. Halle Cheeseman earned a PhD in Electrochemistry & Corrosion from the University of Nottingham in UK, graduating in 1985. She has held several executive positions in the battery industry over the past 32 years, including Sr. VP of R&D at Spectrum Brands and VP of R&D at Exide Technologies. Her specific battery experience includes Lithium Ion, Zinc Air, Nickel Metal Hydride, Nickel Iron, Alkaline and Lead Acid, focusing on Consumer, Industrial, Automotive & Renewable Energy applications. In July 2017, Dr. Cheeseman founded Energy Blues LLC, an energy storage consulting cooperative comprising 20+ subject matter experts.
Buy Now
-

Battery Selection Tutorial Course 2/3: Beyond the Standards: Device-Specific Testing
After choosing your cell and manufacturer (Part 1 of this series), most likely, they will have passed the tests of various standards organizations. However, depending on your operating environment, you may need to go above and beyond the baseline to ensure your product operates as intended. This webinar is Part 2 in a three-part series and will review a variety of factors to consider in your device-specific testing, including designing tests to predict the outcomes of various user-abuse scenarios, understanding the mechanisms of gas generation, capacity retention based on different voltage windows, and what happens if you need to cycle your cells outside of their operating range (outside in an Arizona summer or Minnesota winter, for example).
This webinar will focus on the following key topics:
• User-abuse scenarios to prevent against
• Causes and effects of various gas generation mechanisms
• Voltage limits
Presenter
Exponent – a multidisciplinary engineering and scientific consulting firm with significant experience in various aspects of battery design, safety testing and failure analysis.
Buy Now
-

Avoid Battery Explosions and Fires – With Right Data and Better Designs
Modern Li Ion batteries contain hazardous chemicals and heat up during use – this combination always has the potential to cause fires and explosions. This presentation will focus on improving the understanding of how such incidents occur, what can be done to avoid them and how the risk can be minimized during early stage design.
The solution lies in knowledge of the heat generation rate during normal use, and information about safe boundaries such as temperature, discharge rate & overcharge in realistic situations that represent actual conditions of use. Data from commercial batteries of different types, including videos of batteries undergoing thermal runaway, will be used to illustrate these points.
A relatively new technique will also be discussed with data, which allows total heat output during discharge to be measured on-line and this can be used both for design and battery modelling. Examples of the data will be provided.
This webinar will focus on the following key topics:
• Why battery fires and explosions occur
• How to design safer batteries through understanding of heat generation
• Video evidence of batteries under explosive conditions
• How better thermal management systems can be designed – based on heat measurement from isothermal calorimetry
• Laboratory instruments suitable for testing and data generation
Presenter
Dr. Jasbir Singh – Managing Director at Hazard Evaluation Laboratory
Jasbir is a chemical engineer specializing in thermal hazards and calorimetry, traditionally for the chemical industry but now increasingly involved in battery safety, especially Li-ion EV and related types.
A graduate of Imperial College (London), where he undertook PhD into combustion and explosions, his experience includes many years in process design for the chemical and petrochemical industries. He is currently developing test methods and instruments for use in design of battery thermal management systems.
Buy Now
-

Accelerating Launch of New Battery Technologies by Expediting Samples Through Collaborative Partnerships
Polaris is a processing lab that accelerates new lithium ion battery developments resulting in faster delivery of samples. It provides processing services to accelerate the optimization of recipes for battery developers. Using its services, customers can avoid delays in launching products due to internal funding and staffing constraints.
Services include anode and cathode electrode mix and coat trials, pouch stack cell assemblies, cell and material analytical testing services, business advisory services, and a link to high volume production.
Two major roadblocks facing battery technology companies are addressed: 1) Startups lack staffing, process knowledge, funding, and equipment to develop samples, and 2) Commercialization of new battery technologies is capital intensive and takes long time to pass quality standards
This webinar will focus on the following key topics:
• Significant new material inventions in lithium ion and other advanced battery chemistries in the US
• Two primary issues or “gaps” in getting these technologies to the market
– generating samples for investors, customers and internal engineering evaluation and optimization
– building a battery factory and gaining product and quality system approval (a huge undertaking)
• Polaris Battery Labs Capability Overview for samples and commercialization
• Partner Profile; Carestream Heath as a contract coating partner to reduce time-to-market and risks
Presenter
Doug Morris – CEO – Polaris Battery Labs, LLC
Doug has over 30 years experience in the telecommunications, components, battery, and energy storage industries. Prior to working at Polaris Labs he was VP of Operations at Enevate. Doug has also held various executive, management, and engineering positions over his 21 year career with Motorola where he was VP and Director of Engineering, Quality, and Supply Chain Management for the Energy Systems Group. Doug was also a founder of Motorola’s Product Testing Services business.
Buy Now