
Advancing Mining Processes to Make Better Materials for Use in Lithium Ion Batteries
American Manganese Inc has developed a low-cost, environmentally friendly hydrometallurgical process to recover manganese (Mn) from lower grade resources. American Manganese has applied for a patent for their hydrometallurgical process that produces electrolytic manganese metal with low energy and water consumption. American Manganese commissioned R&D contractor, Kemetco Research Inc to determine uses of Artillery Peak manganese resource material to generate high value alternative products. Chemical manganese dioxide (CMD) and lithiated manganese oxide (LixMn2O4) for use in rechargeable batteries were the areas researched.
The research was successful in producing CMD from Artillery Peak resource material with low cation impurities and avoiding processing steps that are known to introduce metallic impurities in the final product. Cation impurities cause capacity fade, whereas metallic impurities are known to cause catastrophic failures (such as fire and explosions) in lithium ion batteries. Working rechargeable lithium ion coin cell battery prototypes were produced from the CMD material.
This webinar will focus on the following key topics:
• Catastrophic failure of Li Ion batteries caused by metallic impurities that may be introduced from the mining of raw materials
• Conventional mining process to recover MnO2 used to make LiMn2O4
• Research on a new mining process that avoids steps known to introduce metallic impurities to recover MnO2 used to make LiMn2O4
Presenter
Norman Chow – President – Kemetco Research, Inc.
Norman earned a B.A.Sc. and M.A.Sc. in Metals and Materials Engineering from University of British Columbia. He is a Registered Professional Engineer (P. Eng.) in British Columbia. He has over 15 years of technology development and contract research experience. He is the President of Kemetco Research Inc., which he formed after acquiring the Industrial Process Division of BC Research Inc. BC Research had been in operation for over 60 years as an R&D contractor.
Buy Now

Battery Ageing – How Modeling is Used to Predict Battery Life
Battery modeling and simulation makes it possible to analyze multiple operating conditions and design parameters for batteries and other electrochemical systems and processes. By developing mathematical models you can begin to understand the interaction of electrochemical and chemical processes in the battery and how these processes affect the performance and life of the battery.
In this presentation, we will take a look at the benefits of modeling and simulation in the design, selection, and operation of a lithium-ion battery. We will especially take a look at how modeling can be used together with testing. These results provide manufacturers and application experts with the data to not only predict battery life but to analyze the implications of design parameters and operating conditions to better understand the limitation of the battery.
This webinar will focus on the following key topics:
• Benefits of modeling and simulations in the design, selection, and operation of a lithium-ion battery
• Implications of design parameters and operating conditions with respect to experimental observations of battery performance, aging, and battery safety
• How battery modeling can be used together with testing
Presenter
Tom O’Hara – Global Business Manager, Intertek
Tom O’Hara is the global business manager / advisory services for Intertek’s energy storage programs. Aside from his consulting role, Tom supports U.S. and European marketing and sales efforts and APAC CTIA certification efforts. As a 30-year veteran of the battery technology field, Tom has worked in Energizer Battery’s R&D sector and consulted with several start-up battery companies. He is also the co-inventor of the world’s first successful mercury-free zinc air button cell and holds seven U.S. patents. He obtained both a B.S. and M.S. in chemistry from Wake Forest University in North Carolina.
Buy Now

Development and Testing of Electric Drives and Battery Management Systems
Many types of hybrid and electric drive (E-Drive) control systems are being developed for platforms in several industries. These systems also use Battery Management Systems (BMS) to handle their demanding power needs. However, the development of these technologies brings increased system complexity, evident in the many platform variants and control algorithms of various electronic control units (ECUs).
dSPACE provides comprehensive solutions for E-Drive or BMS development, from providing proper hardware I/O interfaces for prototyping/testing these applications to real-time models for simulation of these controlled systems. There is also the need for consideration of power and safety requirements and precision of the simulation or control capability.
This presentation will cover RCP and HIL systems and models for the development and validation of E-Drive and BMS control systems. Specific implementation techniques for model processing and interfaces in real-time along with critical power interface and electrical hardware functionality will be shown.
This webinar will focus on the following key topics:
• Real-time Simulation Models for Electric Motors and Battery Systems
• Rapid Prototyping hardware for E-Drive and BMS Development
• Hardware-in-the-Loop (HIL) Simulators for testing E-Drive/BMS Systems
Presenter
Jace Allen – Lead Technical Specialist – Simulation & Test Systems at dSPACE Inc.
Jace is the Lead Technical Specialist for Simulation and Test Systems at dSPACE, Inc, having designed and managed over 200 Hardware-in-the-Loop (HIL) system implementations for various customers. In the past 20 years he has handled many diverse modeling, controls, and simulation test applications in the Automotive, Commercial Vehicle, and Aerospace areas. His background includes modeling, simulation, and product development for vehicle powertrain, safety/security systems and also software development with embedded controls tools. He is a member of SAE, IEEE, and AIAA and has published 10 SAE Papers.
Buy Now

Battery Selection Tutorial Course 2/3: Beyond the Standards: Device-Specific Testing
After choosing your cell and manufacturer (Part 1 of this series), most likely, they will have passed the tests of various standards organizations. However, depending on your operating environment, you may need to go above and beyond the baseline to ensure your product operates as intended. This webinar is Part 2 in a three-part series and will review a variety of factors to consider in your device-specific testing, including designing tests to predict the outcomes of various user-abuse scenarios, understanding the mechanisms of gas generation, capacity retention based on different voltage windows, and what happens if you need to cycle your cells outside of their operating range (outside in an Arizona summer or Minnesota winter, for example).
This webinar will focus on the following key topics:
• User-abuse scenarios to prevent against
• Causes and effects of various gas generation mechanisms
• Voltage limits
Presenter
Exponent – a multidisciplinary engineering and scientific consulting firm with significant experience in various aspects of battery design, safety testing and failure analysis.
Buy Now