-

Advancing Mining Processes to Make Better Materials for Use in Lithium Ion Batteries
American Manganese Inc has developed a low-cost, environmentally friendly hydrometallurgical process to recover manganese (Mn) from lower grade resources. American Manganese has applied for a patent for their hydrometallurgical process that produces electrolytic manganese metal with low energy and water consumption. American Manganese commissioned R&D contractor, Kemetco Research Inc to determine uses of Artillery Peak manganese resource material to generate high value alternative products. Chemical manganese dioxide (CMD) and lithiated manganese oxide (LixMn2O4) for use in rechargeable batteries were the areas researched.
The research was successful in producing CMD from Artillery Peak resource material with low cation impurities and avoiding processing steps that are known to introduce metallic impurities in the final product. Cation impurities cause capacity fade, whereas metallic impurities are known to cause catastrophic failures (such as fire and explosions) in lithium ion batteries. Working rechargeable lithium ion coin cell battery prototypes were produced from the CMD material.
This webinar will focus on the following key topics:
• Catastrophic failure of Li Ion batteries caused by metallic impurities that may be introduced from the mining of raw materials
• Conventional mining process to recover MnO2 used to make LiMn2O4
• Research on a new mining process that avoids steps known to introduce metallic impurities to recover MnO2 used to make LiMn2O4
Presenter
Norman Chow – President – Kemetco Research, Inc.
Norman earned a B.A.Sc. and M.A.Sc. in Metals and Materials Engineering from University of British Columbia. He is a Registered Professional Engineer (P. Eng.) in British Columbia. He has over 15 years of technology development and contract research experience. He is the President of Kemetco Research Inc., which he formed after acquiring the Industrial Process Division of BC Research Inc. BC Research had been in operation for over 60 years as an R&D contractor.
Buy Now
-

Addressing Engineering Challenges of Vehicle Electrification With Model-Based Systems Engineering
The concern for the environment and energy savings is changing the way we think about transportation. Wide spreading vehicle electrification – not only through Electric Vehicles (EV) and Hybrid Electric Vehicles (HEV), but also electrification in conventional vehicles – has become a common trend of the industry and the upcoming battlefield to install new leading positions. Accounting for costs, reliability, safety, performance, customer acceptance, infrastructure and design process makes manufacturers and suppliers facing new engineering challenges that need to be addressed in a very short time-frame.
Technologies used for electrification are causing a growing complexity in systems and components, and producing vehicles designed right, first, at reasonable costs make the implementation of collaborative mechatronic system simulation a decisive and mandatory step in the engineering process.
This webinar will focus on the following key topics:
• What are the global trends and challenges of vehicle electrification?
• What are the available technologies for reducing CO2 emissions?
• What are the benefits of stop & start and regenerative braking systems?
• How to characterize battery and optimize its thermal management?
• How do energy storage architectures impact battery aging?
Presenter
Himanshu Kalra – Application Engineer, Siemens
Himanshu Kalra is an Application Engineer with Siemens PLM Software. He graduated with his Masters of Science degree in Mechanical Engineering from Michigan Tech University and his Bachelors in Mechanical Engineering from Institute of Management and Technology, India. He works with Model Based Systems Engineering (MBSE) Simulation tools to model and analyze vehicle electrification strategies, including thermal management, battery characterization and the impacts on battery ageing. He also has an experience working with technologies used for reducing emissions on internal combustion engines.
Buy Now
-

Certification Challenges for Secondary Use EV Batteries
As the 1st generation of Lithium-ion based hybrid and battery electric vehicles are reaching end-of life, or original traction batteries are being replaced with new batteries, the interest in secondary life or repurposing of these batteries continues to grow. Lithium-ion batteries present several challenges to Auto OEM’s, Recyclers and waste operators. Repurposing of EV batteries for non-automotive applications also creates new challenges for certification and acceptance by AHJ’s (Authorities Having Jurisdiction). This webinar discusses the current market challenges and concerns, while providing a roadmap of the current options for various usage cases of reused or repurposed EV batteries.
This webinar will focus on the following key topics:
• Understand the usage cases for secondary life batteries
• Review market drivers for secondary use batteries
• Review the concerns of battery and cell manufacturers with re-use of lithium-ion batteries
• Discuss the unique challenges to certifying used batteries for new applications
• Discuss current options for certification in the US market
Presenter
Rich Byczek – Global Technical Director for Transportation Technologies at Intertek
Rich has over 20 years of experience in product development and validation testing, 14 of which have been spent at Intertek. Mr. Byczek is also an expert in the areas of energy storage, audio equipment and EMC testing. He sits on several SAE, IEC, UL and ANSI standards panels, focusing on Energy Storage and Electric Vehicle Technologies. He holds a Bachelor of Science in Electrical Engineering from Lawrence Technological University in Southfield, Michigan, and is based at the Intertek facility located in Plymouth, Michigan.
Buy Now
-

Battery Safety Assessment: From Cell to Pack Level
FREE Webinar – PlugVolt is a proud sponsor of this event.
For fast and reliable battery pack development, a virtual assessment of battery safety via simulation is presented. The methodology, from single cell abuse testing up to battery pack simulation of crash and crush loads, is discussed. Cell tests that provide detailed understanding of the mechanical behavior of single Li-ion cells are used to improve battery stiffness and to optimize battery pack design.
This webinar will focus on the following key topics:
• Method description: battery safety assessment from cell to pack level
• Abuse cell tests
• Abuse cell simulations
• Crash and crush simulations at module and pack levels
Presenter
Jeremy Gaume – Project Manager, Analysis of Engineering and Technology Powertrain Systems at AVL GmbH
Jeremy Gaume graduated from the University of Technology of Belfort-Montbeliard (U.T.B.M.), France, with a Master Diploma in thermo-mechanical system modelling and optimization. He has 10 years’ of experience in the automotive field. Before joining AVL, he worked at Magna Steyr for CAE crash (passive safety) assessment. After joining AVL, he was appointed as a Project Manager for Analysis of Engineering and Technology Powertrain Systems. Jeremy is an expert on crash/safety simulation for batteries.
Buy Now
Leave a Reply
You must be logged in to post a comment.