Automotive

Showing 11–15 of 15 results

  • Placeholder

    Lithium Ion Capacitors – Combining Energy with Power

    FREE Webinar – JSR Micro, Inc. is a proud sponsor of this event.

    Lithium Ion Capacitors (LIC) are hybrids of electric double-layer capacitors (EDLCs) and lithium ion batteries (LIB). Combining the reversible non-Faradaic cathode from an EDLC and the reversible Faradaic anode from an LIB results in an ultra or super capacitor with significantly increased energy density, improved float performance and low self-discharge rates. Avoiding the lithium metal oxide cathodes from LIB’s improves the inherent safety and eliminates Cobalt content, however still combines aspects of energy & power of both cell types. The Faradaic intercalation/deintercalation reactions at the anode are capable of generating a significant amount of charge, while the non-Faradaic electrostatic storage of the electrical energy formed at the interface of the electrode and the electrolyte, known as an electric double layer, results in fast charge and discharge capabilities for hundreds of thousands, if not millions of cycles.

    This webinar will focus on the following key topics:

    • What is an LIC? Technology Introduction
    • Key Benefits
    • Safety
    • EDLC vs LIC
    • Applications

    Presenter

    Jeff Myron – Energy Solutions Program Manager at JSR Micro, Inc.

    Since 2011 Jeff has been responsible for business development in North America of JSR group’s environmental energy products including, lithium ion capacitors (LIC) and aqueous battery binders. Jeff joined JSR in 2006 as a Technical Sales Specialist for advanced photoresists utilized in IC manufacturing. Immediately prior to JSR, Jeff worked at Molecular Imprints developing the commercial infrastructure for next generation nano imprint lithography templates. Prior to joining Molecular Imprints, he held various engineering, engineering management & product management positions at Motorola, DuPont Photomask & Brewer Science. Jeff earned a bachelor’s degree in chemistry from Illinois State University in 1990 and an MBA from Webster University in 2001.

    Buy Now
  • Placeholder

    Addressing Engineering Challenges of Vehicle Electrification With Model-Based Systems Engineering

    The concern for the environment and energy savings is changing the way we think about transportation. Wide spreading vehicle electrification – not only through Electric Vehicles (EV) and Hybrid Electric Vehicles (HEV), but also electrification in conventional vehicles – has become a common trend of the industry and the upcoming battlefield to install new leading positions. Accounting for costs, reliability, safety, performance, customer acceptance, infrastructure and design process makes manufacturers and suppliers facing new engineering challenges that need to be addressed in a very short time-frame.

    Technologies used for electrification are causing a growing complexity in systems and components, and producing vehicles designed right, first, at reasonable costs make the implementation of collaborative mechatronic system simulation a decisive and mandatory step in the engineering process.

    This webinar will focus on the following key topics:

    • What are the global trends and challenges of vehicle electrification?
    • What are the available technologies for reducing CO2 emissions?
    • What are the benefits of stop & start and regenerative braking systems?
    • How to characterize battery and optimize its thermal management?
    • How do energy storage architectures impact battery aging?

    Presenter

    Himanshu Kalra – Application Engineer, Siemens

    Himanshu Kalra is an Application Engineer with Siemens PLM Software. He graduated with his Masters of Science degree in Mechanical Engineering from Michigan Tech University and his Bachelors in Mechanical Engineering from Institute of Management and Technology, India. He works with Model Based Systems Engineering (MBSE) Simulation tools to model and analyze vehicle electrification strategies, including thermal management, battery characterization and the impacts on battery ageing. He also has an experience working with technologies used for reducing emissions on internal combustion engines.

    Buy Now
  • Placeholder

    Key Trends, Recent Developments and ‘What’s Next’ for Energy Storage?

    Billions of dollars have recently been invested into advanced energy storage systems initiatives globally. These include further development of R&D and manufacturing advancements in xEV batteries, stationary power systems, “beyond lithium” technologies, and more. NextEnergy will share some knowledge gained through its suite of venture support services, including access to funding opportunities, & in-depth value chain and market analyses, based on primary & secondary research.

    This webinar will highlight some key market and R&D trends, key innovators in the energy storage space, and take a high-level look at other initiatives influencing “what’s next” in the field of advanced energy storage, with an emphasis on Li Ion batteries for automotive applications.

    This webinar will focus on the following key topics:

    • NextEnergy’s capabilities, and a sneak preview of NextEnergy’s Li Ion battery value chain. This work is primarily focused on automotive applications
    • Key general trends in the energy storage sector, in terms of manufacturing, R&D, and market trends
    • A brief review of select early stage companies offering innovative solutions to the energy storage community
    • Select novel R&D initiatives in the Li Ion and “beyond lithium ion” spaces will be presented, at a high-level, and “what’s next” in energy storage systems will be addressed

    Presenter

    Kelly Jezierski – Energy Storage Manager, NextEnergy

    Kelly Jezierski has been with NextEnergy for over 7 years. NextEnergy is one of the nation’s leading accelerators of advanced energy technologies, businesses and industries. Kelly is leading a joint initiative funded by the US Department of Commerce and Michigan Economic Development Corporation (MEDC) to foster growth in the advanced energy storage cluster and fill gaps in the domestic supply chain. Kelly holds a Bachelor of Science degree in Chemical Engineering and a Master of Science degree in Alternative Energy Technologies degrees, both from Wayne State University.

    Buy Now
  • Placeholder

    Development and Testing of Electric Drives and Battery Management Systems

    Many types of hybrid and electric drive (E-Drive) control systems are being developed for platforms in several industries. These systems also use Battery Management Systems (BMS) to handle their demanding power needs. However, the development of these technologies brings increased system complexity, evident in the many platform variants and control algorithms of various electronic control units (ECUs).

    dSPACE provides comprehensive solutions for E-Drive or BMS development, from providing proper hardware I/O interfaces for prototyping/testing these applications to real-time models for simulation of these controlled systems. There is also the need for consideration of power and safety requirements and precision of the simulation or control capability.

    This presentation will cover RCP and HIL systems and models for the development and validation of E-Drive and BMS control systems. Specific implementation techniques for model processing and interfaces in real-time along with critical power interface and electrical hardware functionality will be shown.

    This webinar will focus on the following key topics:

    • Real-time Simulation Models for Electric Motors and Battery Systems
    • Rapid Prototyping hardware for E-Drive and BMS Development
    • Hardware-in-the-Loop (HIL) Simulators for testing E-Drive/BMS Systems

    Presenter
    Jace Allen – Lead Technical Specialist – Simulation & Test Systems at dSPACE Inc.

    Jace is the Lead Technical Specialist for Simulation and Test Systems at dSPACE, Inc, having designed and managed over 200 Hardware-in-the-Loop (HIL) system implementations for various customers. In the past 20 years he has handled many diverse modeling, controls, and simulation test applications in the Automotive, Commercial Vehicle, and Aerospace areas. His background includes modeling, simulation, and product development for vehicle powertrain, safety/security systems and also software development with embedded controls tools. He is a member of SAE, IEEE, and AIAA and has published 10 SAE Papers.

    Buy Now
  • Placeholder

    Advancing Mining Processes to Make Better Materials for Use in Lithium Ion Batteries

    American Manganese Inc has developed a low-cost, environmentally friendly hydrometallurgical process to recover manganese (Mn) from lower grade resources. American Manganese has applied for a patent for their hydrometallurgical process that produces electrolytic manganese metal with low energy and water consumption. American Manganese commissioned R&D contractor, Kemetco Research Inc to determine uses of Artillery Peak manganese resource material to generate high value alternative products. Chemical manganese dioxide (CMD) and lithiated manganese oxide (LixMn2O4) for use in rechargeable batteries were the areas researched.

    The research was successful in producing CMD from Artillery Peak resource material with low cation impurities and avoiding processing steps that are known to introduce metallic impurities in the final product. Cation impurities cause capacity fade, whereas metallic impurities are known to cause catastrophic failures (such as fire and explosions) in lithium ion batteries. Working rechargeable lithium ion coin cell battery prototypes were produced from the CMD material.

    This webinar will focus on the following key topics:

    • Catastrophic failure of Li Ion batteries caused by metallic impurities that may be introduced from the mining of raw materials
    • Conventional mining process to recover MnO2 used to make LiMn2O4
    • Research on a new mining process that avoids steps known to introduce metallic impurities to recover MnO2 used to make LiMn2O4

    Presenter
    Norman Chow – President – Kemetco Research, Inc.

    Norman earned a B.A.Sc. and M.A.Sc. in Metals and Materials Engineering from University of British Columbia. He is a Registered Professional Engineer (P. Eng.) in British Columbia. He has over 15 years of technology development and contract research experience. He is the President of Kemetco Research Inc., which he formed after acquiring the Industrial Process Division of BC Research Inc. BC Research had been in operation for over 60 years as an R&D contractor.

    Buy Now