Electrochemistry

Showing 1–10 of 21 results

  • Placeholder

    Battery EIS Tutorial Course 1/4: Electrochemical Impedance Spectroscopy (EIS) – Fundamentals and Principles

    Electrochemical Impedance Spectroscopy (EIS) will be described from a theoretical point of view. Various representations (Nyquist, Bode, etc.) of impedance data will be introduced. Guidelines on how to interpret the data will also be provided.

    This webinar will focus on the following key topics:

    • Definition of impedance
    • Various representations
    • Impedance interpretation: the deductive and the inductive way

    Presenter
    Dr. Nicolas Murer – Product Manager and Applications Engineer at Bio-Logic SAS, France

    Dr. Nicolas Murer is a Product Manager and Applications Engineer at Bio-Logic SAS, France, which designs and manufactures high performance research grade instrumentation and software : potentiostats/galvanostats with built-in Electrochemical Impedance Spectroscopy (EIS), Battery Cyclers, Frequency Response Analyzers for materials analysis, and scanning probe electrochemical workstations. Nicolas received his engineering diploma from Polytechnic Institute of Grenoble in electrochemistry and materials in 2003. He then received his Ph.D. at Université de Bourgogne in 2008. Prior to joining Bio-Logic, he was a post-doctorate at the Ohio State University, Columbus, Ohio (USA).

    Buy Now
  • Placeholder

    Battery EIS Tutorial Course 2/4: EIS at Higher Frequencies for Battery Studies – Good or Bad Indicators for SoC and SoH?

    Impedance data at higher frequencies can be used, to some extent, as indicators of the State of Charge (SoC) or State of Health (SoH) of the battery. A discussion of the relevance of this indicator, as well as the most accurate way to determine this value, will be discussed.

    This webinar will focus on the following key topics:

    • Typical shape of an impedance graph on a battery
    • How can it be used for battery monitoring, optimization, and sorting ?
    • Various ways to measure this value and our recommendation

    Presenter
    Dr. Nicolas Murer – Product Manager and Applications Engineer at Bio-Logic SAS, France

    Dr. Nicolas Murer is a Product Manager and Applications Engineer at Bio-Logic SAS, France, which designs and manufactures high performance research grade instrumentation and software : potentiostats/galvanostats with built-in Electrochemical Impedance Spectroscopy (EIS), Battery Cyclers, Frequency Response Analyzers for materials analysis, and scanning probe electrochemical workstations. Nicolas received his engineering diploma from Polytechnic Institute of Grenoble in electrochemistry and materials in 2003. He then received his Ph.D. at Université de Bourgogne in 2008. Prior to joining Bio-Logic, he was a post-doctorate at the Ohio State University, Columbus, Ohio (USA).

    Buy Now
  • Placeholder

    Battery EIS Tutorial Course 3/4: Lower Frequency Impedance Measurements – What Information Can we Get on a Battery?

    In batteries involving intercalation of species, by using the impedance response at lower frequencies, it is possible to extract the diffusion coefficient of the intercalated species and monitor its change during discharge and charge.

    Low frequency impedance can also be used to estimate the capacity of a battery. Several strategies are given to perform reliable measurements.

    This webinar will focus on the following key topics:

    • Impedance data at lower frequencies that can be used to extract diffusion parameters of intercalated species
    • Several possibilities that are available, depending on the type of impedance graph obtained

    Presenter
    Dr. Nicolas Murer – Product Manager and Applications Engineer at Bio-Logic SAS, France

    Dr. Nicolas Murer is a Product Manager and Applications Engineer at Bio-Logic SAS, France, which designs and manufactures high performance research grade instrumentation and software : potentiostats/galvanostats with built-in Electrochemical Impedance Spectroscopy (EIS), Battery Cyclers, Frequency Response Analyzers for materials analysis, and scanning probe electrochemical workstations. Nicolas received his engineering diploma from Polytechnic Institute of Grenoble in electrochemistry and materials in 2003. He then received his Ph.D. at Université de Bourgogne in 2008. Prior to joining Bio-Logic, he was a post-doctorate at the Ohio State University, Columbus, Ohio (USA).

    Buy Now
  • Placeholder

    Battery EIS Tutorial Course 4/4: Factors Affecting EIS Measurements – How to Check and Correct

    When performing an impedance measurement, it is necessary to ensure that the modulation is low enough such that the behavior of the system is linear. It should also be confirmed that the system does not vary in time, and that its stationary state is reached. Several strategies are given to check and correct these phenomena.

    This webinar will focus on the following key topics:

    • For reliable EIS measurements, it should be checked that the response of the system is linear, time-invariant and stationary
    • Several strategies are presented to perform reliable impedance measurements

    Presenter
    Dr. Nicolas Murer – Product Manager and Applications Engineer at Bio-Logic SAS, France

    Dr. Nicolas Murer is a Product Manager and Applications Engineer at Bio-Logic SAS, France, which designs and manufactures high performance research grade instrumentation and software : potentiostats/galvanostats with built-in Electrochemical Impedance Spectroscopy (EIS), Battery Cyclers, Frequency Response Analyzers for materials analysis, and scanning probe electrochemical workstations. Nicolas received his engineering diploma from Polytechnic Institute of Grenoble in electrochemistry and materials in 2003. He then received his Ph.D. at Université de Bourgogne in 2008. Prior to joining Bio-Logic, he was a post-doctorate at the Ohio State University, Columbus, Ohio (USA).

    Buy Now
  • Placeholder

    Preventing Li Ion Battery Failures From a Manufacturing and Design Perspective

    How can you be proactive and make sure your cell supplier is the right one and you don’t end up with thermal events and field failures? Is it enough to qualify a cell manufacturer according to industry standards? The answer is that the majority of compliance based testing is related to abuse tolerance. However, the vast majority of field failures do not occur under abuse scenarios, but happen under normal operating conditions due to manufacturing flaws or design and system tolerance issues that cause internal shorts. In this webinar, you will learn about common lithium ion battery failure modes and how to be proactive in preventing these.

    This webinar will focus on the following key topics:

    • Gain an understanding of lithium ion battery failure mechanisms and the pathway to thermal events
    • Learn how cell design impacts battery safety and reliability
    • Learn the basic steps in a lithium ion cell manufacturing process, and how the process controls affect safety and reliability
    • Come away with a checklist to qualify your cell manufacturer

    Presenter
    Vidyu Challa – Technical Director at DfR Solutions

    Vidyu Challa is Technical Director at DfR Solutions where she works on battery reliability and safety issues. Dr. Challa helps customers with their battery challenges including design reviews, manufacturing audits and supplier qualification. She obtained a PhD from CALCE Electronic Products and Systems Center at the
    University of Maryland. She has broad based expertise that includes engineering technology start-up experience, product development, R&D, and business development. Dr. Challa has published her work in journals, presented at conferences and written blog articles.

    Buy Now
  • Placeholder

    Avoid Battery Explosions and Fires – With Right Data and Better Designs

    Modern Li Ion batteries contain hazardous chemicals and heat up during use – this combination always has the potential to cause fires and explosions. This presentation will focus on improving the understanding of how such incidents occur, what can be done to avoid them and how the risk can be minimized during early stage design.

    The solution lies in knowledge of the heat generation rate during normal use, and information about safe boundaries such as temperature, discharge rate & overcharge in realistic situations that represent actual conditions of use. Data from commercial batteries of different types, including videos of batteries undergoing thermal runaway, will be used to illustrate these points.

    A relatively new technique will also be discussed with data, which allows total heat output during discharge to be measured on-line and this can be used both for design and battery modelling. Examples of the data will be provided.

    This webinar will focus on the following key topics:

    • Why battery fires and explosions occur
    • How to design safer batteries through understanding of heat generation
    • Video evidence of batteries under explosive conditions
    • How better thermal management systems can be designed – based on heat measurement from isothermal calorimetry
    • Laboratory instruments suitable for testing and data generation

    Presenter
    Dr. Jasbir Singh – Managing Director at Hazard Evaluation Laboratory

    Jasbir is a chemical engineer specializing in thermal hazards and calorimetry, traditionally for the chemical industry but now increasingly involved in battery safety, especially Li-ion EV and related types.

    A graduate of Imperial College (London), where he undertook PhD into combustion and explosions, his experience includes many years in process design for the chemical and petrochemical industries. He is currently developing test methods and instruments for use in design of battery thermal management systems.

    Buy Now
  • Placeholder

    Electrochemical Impedance Spectroscopy and Its Application to Battery Analysis

    Electrochemical Impedance Spectroscopy (EIS) is a well-established experimental technique that has applications in coatings, corrosion, sensors, electrochemical double layer capacitors, batteries among others. The power of EIS partly comes from its ability to access a very wide range of frequencies (typically from MHz to μHz). For batteries, parameters such as the internal resistance, electrode surface capacitance and leakage are accessible at different frequencies across the spectrum. This allows EIS to gather all the relevant information with a single measurement. In this webinar, we will briefly introduce EIS and cover its application to batteries. We will talk about how to analyze typical data and how to gather the relevant information. We will further talk about available instrumentation and their limitations.

    This webinar will focus on the following key topics:

    • What is impedance spectroscopy?
    • What can impedance spectroscopy do for Battery analysis?
    • How can capacitance, internal resistance and leakage be determined using EIS?
    • What are the instrumental requirements and limits?

    Presenter

    Chris Beasley – Gamry Instruments

    Chris Beasley received a BS in Chemistry from Kutztown University in 2000 and got a PhD in electrochemistry from University of North Carolina at Chapel Hill in 2010. His doctoral dissertation was on using redox-active nanoparticles as supercapacitors. Chris joined Gamry Instruments in 2010.

    Buy Now
  • Placeholder

    Understand and Prevent Battery Fires and Explosions – and Avoid Costly Failures Like the Samsung Note 7

    Modern batteries (eg Li-Ion) contain hazardous chemicals & they heat up during use: this combination always has the potential to cause fires & explosions. This presentation will focus on improving the understanding of how these incidents occur, what can be done to avoid them & how the risk can be minimized during early stage design.

    The Samsung Note 7 phone & Boeing Dreamliner airplane fires are very costly examples of how even large corporations fail to understand the potential fire risk of batteries.

    The solution lies in knowledge of heat generation rate during normal use & information about safe boundaries such as temperature, discharge rate & overcharge, in realistic situations that represent actual use conditions. Data from commercial batteries of different types will be used to illustrate these points.

    A relatively new technique will also be discussed with data, which allows total heat output during discharge to be measured on-line and this can be used both for design and battery modelling. Examples of the data will be provided.

    This webinar will focus on the following key topics:

    • Why battery fires & explosions occur
    • How to design safer batteries though understanding of heat generation
    • Video evidence of batteries under explosive conditions
    • How better thermal management systems can be designed – based on heat measurement from isothermal calorimetry
    • Laboratory instruments suitable for testing and data generation

    Presenter
    Dr. Jasbir Singh – Managing Director at Hazard Evaluation Laboratory

    Jasbir is a chemical engineer specializing in thermal hazards and calorimetry, traditionally for the chemical industry but now increasingly involved in battery safety, especially Li-ion EV and related types.

    A graduate of Imperial College (London), where he undertook PhD into combustion and explosions, his experience includes many years in process design for the chemical and petrochemical industries. He is currently developing test methods and instruments for use in design of battery thermal management systems.

    Buy Now
  • Placeholder

    Solid Electrolytes and Bulk Scale Solid-State Batteries

    Recently, the push to move beyond Li – ion battery technology has grown. Several advanced battery technologies & chemistries have been identified as promising candidates including i) solid-state batteries with Li metal anode, ii) Li – S chemistries, iii) Li – air(oxygen), and iv) flow batteries. Although an engineered solution using liquids may be possible for some of these options, a solid electrolyte is an enabling technology for each of these beyond Li – ion alternatives. This webinar will introduce the operating principles of each of these cell technologies and solid electrolytes will be discussed in this context. The requirements of a solid electrolyte will be outlined & several state of the art solid electrolytes will be compared. Recent technical progress towards the fabrication of solid-state batteries will be reviewed. Finally, an overview of market applications for solid-state will be presented.

    This webinar will focus on the following key topics:

    • Overview of beyond Li – ion battery technologies enabled by solid electrolytes
    • Comparison of state of the art solid electrolytes
    • Recent technical progress towards solid-state batteries
    • Review of market applications for solid-state batteries

    Presenter

    Travis Thompson – Post Doctorate Research Fellow at University of Michigan

    Travis received his B.S. in Mechanical Engineering in 2010 from California State Polytechnic University, Pomona, and his PhD in Materials Science at Michigan State University in 2014. His graduate work has focused on synthesis & processing of materials for direct thermal-to-electric energy conversion & storage. This includes ambient drying of silica aerogels, processing of oxide based thermoelectric materials, & electrochemical characterization of ceramic solid electrolytes for advanced batteries. He is now a Research Fellow at The University of Michigan and is exploring commercialization of Solid-State Batteries from his graduate work.

    Buy Now
  • Placeholder

    Determination of Battery Safety and Performance Parameters Using Adiabatic and Isothermal Calorimetry

    FREE Webinar – Thermal Hazard Technology is a proud sponsor of this event.

    This presentation describes two main types of calorimetry which can be used to carry out safety and performance testing on batteries. Isothermal calorimeters allow for direct heat measurement on cells during use, while adiabatic calorimeters can measure heat released from batteries during thermal runaway.

    Calorimetry can serve as a quantitative scientific method for evaluation of battery safety but it requires appropriate instrumentation. The principles of operation of both types of calorimeters are described along with specific applications within the field of battery testing.

    A combination of both technics allows for detailed thermal characterization of lithium-ion and other rechargeable cells, and differences due to chemistry, cell design, cell age, state of charge and cell size can be evaluated.

    This webinar will focus on the following key topics:

    • The principles of adiabatic and isothermal calorimetry
    • How calorimetry can be used in battery testing
    • Parameters established by adiabatic safety testing
    • Parameters established by isothermal performance testing
    • Pressure measurement and gas collection

    Presenter
    Danny Montgomery – Technical Performance Manager at Thermal Hazard Technology

    Danny Montgomery has worked at Thermal Hazard Technology for 9 years. His current role is Technical Performance Manager; overseeing the lab and technical aspects of instrumentation manufactured by THT. He joined the company in 2009 after graduating from Southampton University with a master’s degree in physics.

    Danny’s focus is primarily on lithium battery calorimetry; both adiabatic and isothermal. He oversees the use of calorimeters for customer sample testing as well as installing calorimeter systems and provided training for battery and automotive companies worldwide, such as Panasonic, BMW and Samsung. Danny works in Thermal Hazard Technology’s UK office in Milton Keynes.

    Buy Now