Electrochemistry

Showing 31–40 of 41 results

  • Placeholder

    Recycling of Lithium Ion Batteries From Electric Vehicles

    The recycling of lithium-ion batteries – from EVs and others – will be discussed in this webinar.

    Recently, the pilot plant of project LithoRec II could prove that a newly developed combination of process steps enables the recovery of a mass fraction of 75 % and more on a material recycling basis from lithium-ion batteries. This is supposed to be much better than state of the art. Combining different process steps like discharging, dismantling, shredding, sifting and air-jet separation the project partners were able to achieve their goal: proving that lithium-ion batteries can be recycled better. One interesting process dealing with the electrolyte came in a black box (which was actually white) and this was because of another ongoing patenting process of Lion Engineering. A modified and simplified process works to directly recycle scraps from the production of lithium-ion batteries – in order to protect both: the environment and the stakeholder’s money.

    This webinar will focus on the following key topics:

    • Recycling of Lithium Ion Batteries
    • Recycling Yields and how to regain 75% and more – on a material recycling basis
    • Direct Recycling of LIB-Production Scraps

    Presenter
    Christian Hanisch – CEO at Lion Engineering

    Christian studied Process Engineering at TU Braunschweig (Germany) and has worked in the research project LithoRec and designed LithoRec II at the Institute for Particle Technology / TU Braunschweig on the topic of Recycling of Lithium Ion Batteries. He developed and patented new recycling processes and led the project to the realization of a pilot plant. Recognizing the highest interest of industrial partners in this topic he co-founded the spin-off Lion Engineering GmbH with fellow PhD students and Professor Arno Kwade in 2011. Beginning in 2016, Christian started to focus full-time on being CEO of Lion Engineering.

    Buy Now
  • Placeholder

    Battery Ageing – How Modeling is Used to Predict Battery Life

    Battery modeling and simulation makes it possible to analyze multiple operating conditions and design parameters for batteries and other electrochemical systems and processes. By developing mathematical models you can begin to understand the interaction of electrochemical and chemical processes in the battery and how these processes affect the performance and life of the battery.

    In this presentation, we will take a look at the benefits of modeling and simulation in the design, selection, and operation of a lithium-ion battery. We will especially take a look at how modeling can be used together with testing. These results provide manufacturers and application experts with the data to not only predict battery life but to analyze the implications of design parameters and operating conditions to better understand the limitation of the battery.

    This webinar will focus on the following key topics:

    • Benefits of modeling and simulations in the design, selection, and operation of a lithium-ion battery
    • Implications of design parameters and operating conditions with respect to experimental observations of battery performance, aging, and battery safety
    • How battery modeling can be used together with testing

     Presenter

    Tom O’Hara – Global Business Manager, Intertek

    Tom O’Hara is the global business manager / advisory services for Intertek’s energy storage programs. Aside from his consulting role, Tom supports U.S. and European marketing and sales efforts and APAC CTIA certification efforts. As a 30-year veteran of the battery technology field, Tom has worked in Energizer Battery’s R&D sector and consulted with several start-up battery companies. He is also the co-inventor of the world’s first successful mercury-free zinc air button cell and holds seven U.S. patents. He obtained both a B.S. and M.S. in chemistry from Wake Forest University in North Carolina.

    Buy Now
  • Placeholder

    Beyond Electrochemical Analysis – 2D to 4D Correlation of Microstructure and Chemistry in Li-ion Batteries

    Single imaging instruments as well as correlative microscopy workflows have demonstrated some unique abilities to support LIB research beyond electrochemical analysis methods. Light microscopy delivers insights about ablation effects & phase orientations in the active material, while scanning electron microscopy (SEM) reveals information about aging effects, nanometer cracks & the composition of the active material. Combining SEM with in-situ Raman spectroscopy extends the traditional SEM capabilities to organic and inorganic material identification. X-ray microscopy, furthermore, delivers 3D non-destructive imaging of full battery packs and localized high-resolution information, thus allowing the identification of regions of interest within the battery material volume. This presentation will demonstrate the application of these techniques to Li-ion battery research, including examples on anode, cathode, binder, and separator materials.

    This webinar will focus on the following key topics:

    • Introduction to available microscopic investigation techniques
    for Li-ion battery research:
    – Light Microscopy
    – Scanning Electron Microscopy
    – X-ray Microscopy
    – Raman Spectroscopy
    • Review of recent battery imaging studies in published literature
    • Case studies on using correlative microscopy to characterize battery performance & failure mechanisms

    Presenter
    Stefanie Freitag – Market Segment Manager at Carl Zeiss

    Stefanie is Market Segment Manager in Materials Research at Carl Zeiss Microscopy in Munich. She holds a Diploma in Engineering Physics, gained first work experiences in a nuclear fusion reactor with a pioneering concept in Greifswald, then worked 3 years in the solar industry in Ulm & Hsinchu, Taiwan. In her current position she analyzes and defines new microscopic solutions for specific materials segments including light microscopy, electron microscopy, x-ray microscopy and chemical methods like Raman spectroscopy.

    Buy Now
  • Placeholder

    Preventing Thermal Runaway in Energy Storage Systems (ESS)

    From air transportation to electric vehicles and most recently “Hover Boards”, our industry is painfully aware of the over-discharge malfunctions associated with high-energy lithium-ion batteries, yet according to recent studies, nearly 70% of all Energy Storage Systems currently deployed are lithium-ion. Avoiding the pitfalls of utilizing greater energy density in larger installations is what will be discussed. Michelle will walk through the recent innovations from materials and process tracking in battery manufacturing to comprehensive control of cells in a fully deployed system. Incorporating lessons learned from recent failure investigations by the NTSB and FAA as well as new DoE mandates, Michelle will discuss how to achieve and in some areas surpass the new emerging safety certifications for a multi-megawatt energy storage system.

    This webinar will focus on the following key topics:

    • Making batteries safe or making safe batteries? (control & mitigation)
    • Cell manufacture tracking, certification and response
    – NTSB & DoE analysis and current situation
    • Incorporating advanced battery management systems (BMS)
    – Active cell dynamic balancing
    – Cell replacement (hot-swapping)
    – System reconfiguration
    – Energy density scalability

    Presenter
    Michelle Klassen – VP of Business Development at Pathion, Inc.

    Michelle Klassen is VP of Business Development for PATHION Inc. which manufactures high-performance, safe, and reliable Energy Storage Systems (ESS) for commercial markets ranging from 86 kilowatt-hours in stand-alone systems to over 1 megawatt-hour in containerized units. Prior to PATHION, as Vice President at ZeroBase Energy, she led the design and implementation of power systems and micro-grids for customers, including the US Department of Defense, Kenya Ministry of Energy and the L.A. Department of Water and Power.

    Buy Now
  • Placeholder

    Lithium Ion Capacitors – Combining Energy with Power

    FREE Webinar – JSR Micro, Inc. is a proud sponsor of this event.

    Lithium Ion Capacitors (LIC) are hybrids of electric double-layer capacitors (EDLCs) and lithium ion batteries (LIB). Combining the reversible non-Faradaic cathode from an EDLC and the reversible Faradaic anode from an LIB results in an ultra or super capacitor with significantly increased energy density, improved float performance and low self-discharge rates. Avoiding the lithium metal oxide cathodes from LIB’s improves the inherent safety and eliminates Cobalt content, however still combines aspects of energy & power of both cell types. The Faradaic intercalation/deintercalation reactions at the anode are capable of generating a significant amount of charge, while the non-Faradaic electrostatic storage of the electrical energy formed at the interface of the electrode and the electrolyte, known as an electric double layer, results in fast charge and discharge capabilities for hundreds of thousands, if not millions of cycles.

    This webinar will focus on the following key topics:

    • What is an LIC? Technology Introduction
    • Key Benefits
    • Safety
    • EDLC vs LIC
    • Applications

    Presenter

    Jeff Myron – Energy Solutions Program Manager at JSR Micro, Inc.

    Since 2011 Jeff has been responsible for business development in North America of JSR group’s environmental energy products including, lithium ion capacitors (LIC) and aqueous battery binders. Jeff joined JSR in 2006 as a Technical Sales Specialist for advanced photoresists utilized in IC manufacturing. Immediately prior to JSR, Jeff worked at Molecular Imprints developing the commercial infrastructure for next generation nano imprint lithography templates. Prior to joining Molecular Imprints, he held various engineering, engineering management & product management positions at Motorola, DuPont Photomask & Brewer Science. Jeff earned a bachelor’s degree in chemistry from Illinois State University in 1990 and an MBA from Webster University in 2001.

    Buy Now
  • Placeholder

    Addressing Engineering Challenges of Vehicle Electrification With Model-Based Systems Engineering

    The concern for the environment and energy savings is changing the way we think about transportation. Wide spreading vehicle electrification – not only through Electric Vehicles (EV) and Hybrid Electric Vehicles (HEV), but also electrification in conventional vehicles – has become a common trend of the industry and the upcoming battlefield to install new leading positions. Accounting for costs, reliability, safety, performance, customer acceptance, infrastructure and design process makes manufacturers and suppliers facing new engineering challenges that need to be addressed in a very short time-frame.

    Technologies used for electrification are causing a growing complexity in systems and components, and producing vehicles designed right, first, at reasonable costs make the implementation of collaborative mechatronic system simulation a decisive and mandatory step in the engineering process.

    This webinar will focus on the following key topics:

    • What are the global trends and challenges of vehicle electrification?
    • What are the available technologies for reducing CO2 emissions?
    • What are the benefits of stop & start and regenerative braking systems?
    • How to characterize battery and optimize its thermal management?
    • How do energy storage architectures impact battery aging?

    Presenter

    Himanshu Kalra – Application Engineer, Siemens

    Himanshu Kalra is an Application Engineer with Siemens PLM Software. He graduated with his Masters of Science degree in Mechanical Engineering from Michigan Tech University and his Bachelors in Mechanical Engineering from Institute of Management and Technology, India. He works with Model Based Systems Engineering (MBSE) Simulation tools to model and analyze vehicle electrification strategies, including thermal management, battery characterization and the impacts on battery ageing. He also has an experience working with technologies used for reducing emissions on internal combustion engines.

    Buy Now
  • Placeholder

    Non-Destructive Testing: Insuring Safety, Reliability, and Reducing Cost of Li Batteries

    Non-destructive non-contact electromagnetic, ultrasonic, holographic interferometry, gas discharge visualization, and combined methods are innovative tools for successful coordination of stages of R&D, manufacturing, and applications of Li batteries. Deployment of automated non-destructive quality assurance technology at every stage of the manufacturing process will increase the reliability and safety of batteries, while lowering overall manufacturing costs.

    This webinar will focus on the following key topics:

    • Physical principles of the non-destructive & non-contact methods for evaluation and testing of Li batteries during production:
    – Initial materials, including nano-structured powders of electrode materials
    – Polymer and solid inorganic electrolytes
    – Properties of electrodes during coating, including the resistance of interface between current collectors and electrode mass
    – Multi-layered electrode structures, as Jelly roll dry electrode structure
    – Final product
    • Design of equipment for non-destructive testing
    • Examples of using the non-destructive methods in Li batteries, super-capacitors, solar cells, chemical industry, and other industries (example – evaluating the properties of the cement)
    • Benchmarking, and the market of application for non-destructive, non-contact testing

    Presenter
    Dr. Elena Shembel – Chairman & CEO at Enerize Corporation

    Dr. Shembel is co-inventor of more than 50 patents and patent applications worldwide, including 15 US Patents and 1 Great Britain patent during last 8 years in the areas of batteries, solar cells, fuel cells, and non-destructive methods of testing. She earned PhD in “Electrochemical processes for systems with porous matrices for space systems”, and degree of Doctor of Chemical Sciences at the FSU Academy of Sciences Institute of Electrochemistry, Moscow for her work in processes and optimization of lithium batteries.

    Buy Now
  • Placeholder

    Update on Zinc Hybrid Cathode Battery Technology: Lessons Learned from Demo Projects with Major Utilities in US & Europe

    With no economical means to store energy, the utility distribution network has typically been overbuilt and continually expanded to serve peak demand, though only a fraction of that infrastructure is used on an average day.

    Working closely with utility partners like AEP and Con Edison, Eos Energy Storage has evaluated the economics of battery storage on the distribution system, with compelling results. Using first-hand knowledge of system costs and specifications, it was found that a utility-owned battery system can break even with a conventional T&D upgrade of ~$5M, or less when monetizing available market revenues.

    In this webinar, Eos will share an update on commercialization of its zinc hybrid cathode battery technology and share lessons learned from deployments with major utilities in the US and Europe, from initial business case analysis to commissioning a turnkey product.

    This webinar will focus on the following key topics:

    • Discuss how energy storage can be leveraged as a utility distribution asset and market resource
    • Share Eos’s experience in deploying energy storage systems at utility sites in the US and Europe
    • Update on performance and path to commercialization for novel zinc hybrid cathode battery technology

    Presenter

    Philippe Bouchard – Vice President, Business Development at Eos Energy Storage

    Philippe joined Eos after 5 years of in-depth experience leading emerging technology and regulatory initiatives within the utility energy industry. While working previously within Southern California Edison’s Advanced Technology Organization, Philippe co-authored SCE’s Smart Grid Deployment Plan and managed a $3 million portfolio of diversified R&D and technology evaluation projects. Philippe brings an interdisciplinary background in chemistry and environmental sciences, and graduated with a B.A. from Pomona College.

    Buy Now
  • Placeholder

    Stability of Li7La3Zr2O12 Garnet Solid-State Electrolyte Against Metallic Lithium

    Energy storage demands will require safer, cheaper and higher performance electrochemical energy storage. While the primary strategy for improving performance has focused on state-of-the-art Li-ion batteries, this work seeks to develop solid-state batteries employing metallic Li anode. Recently, the ceramic electrolyte, Li7La3Zr2O12 (LLZO) cubic garnet, has shown promise owing to its unique combination of properties such as high Li-ion conductivity and electrochemical stability. Generally, LLZO is synthesized through powder processing and sintering at high temperature to produce dense membrane. Processing of the ceramic materials produces internal and surface flaws which will inhibit lithium transport creating localized current density and control the stability against Li dendrite propagation. This presentation will discuss new improvement in methodology to evaluate the integrity of LLZO membrane.

    This webinar will focus on the following key topics:

    • Methodology to evaluate the integrity of LLZO by identifying the microstructural flaws and their impact on mechanical properties
    • DC cycling, EIS, XPS will be shown to determine the reactions that govern the maximum current density
    • Correlate the electrochemical stability and critical current density with defects in polycrystalline solid state LLZO electrolyte

    Presenter
    Asma Sharafi – PhD Student with Jeff Sakamoto at University of Michigan

    Asma received her MS in Chemistry (material science) in 2013 at University of Georgia. Currently, she is a PhD student in Mechanical Engineering at University of Michigan under Jeff Sakamoto’s supervision. The primary focus of her research is on the development of new solid state electrolyte (SSE) with the garnet structure (Li7La3Zr2O12) that offer unprecedented safety and durability.

    Buy Now
  • Placeholder

    Accelerating Launch of New Battery Technologies by Expediting Samples Through Collaborative Partnerships

    Polaris is a processing lab that accelerates new lithium ion battery developments resulting in faster delivery of samples. It provides processing services to accelerate the optimization of recipes for battery developers. Using its services, customers can avoid delays in launching products due to internal funding and staffing constraints.

    Services include anode and cathode electrode mix and coat trials, pouch stack cell assemblies, cell and material analytical testing services, business advisory services, and a link to high volume production.

    Two major roadblocks facing battery technology companies are addressed: 1) Startups lack staffing, process knowledge, funding, and equipment to develop samples, and 2) Commercialization of new battery technologies is capital intensive and takes long time to pass quality standards

    This webinar will focus on the following key topics:

    • Significant new material inventions in lithium ion and other advanced battery chemistries in the US
    • Two primary issues or “gaps” in getting these technologies to the market
    – generating samples for investors, customers and internal engineering evaluation and optimization
    – building a battery factory and gaining product and quality system approval (a huge undertaking)
    • Polaris Battery Labs Capability Overview for samples and commercialization
    • Partner Profile; Carestream Heath as a contract coating partner to reduce time-to-market and risks

    Presenter
    Doug Morris – CEO – Polaris Battery Labs, LLC

    Doug has over 30 years experience in the telecommunications, components, battery, and energy storage industries. Prior to working at Polaris Labs he was VP of Operations at Enevate. Doug has also held various executive, management, and engineering positions over his 21 year career with Motorola where he was VP and Director of Engineering, Quality, and Supply Chain Management for the Energy Systems Group. Doug was also a founder of Motorola’s Product Testing Services business.

    Buy Now