Showing 61–64 of 142 results

  • Placeholder

    EIS for Energy Storage Tutorial Course 2/3 – How to Perform Good and Reliable EIS Measurements

    Electrochemical Impedance Spectroscopy (EIS) is a powerful technique, but it might be difficult to know which parameters to set as it really depends on the studied system. We give a few guidelines and tools needed to set the right amplitude, as well as other experimental parameters of interest that can increase the accuracy and the reliability of your measurement.

    A discussion will be given about when and whether to choose between potentio-controlled or galvano-controlled EIS.

    Finally, we will give recommendations on the conditions that the system under study should fulfill, especially time-variance, with some examples on the effect it has on impedance data and how to correct them.

    This webinar will focus on the following key topics:

    • How to choose the amplitude of the input signal?
    • How to choose between PEIS and GEIS?
    • What do I need to check on my system?

    Presenter
    Dr. Nicolas Murer – Product Manager and Applications Engineer at Bio-Logic SAS, France

    Nicolas Murer is an application and product manager at Bio-Logic Science Instruments. Bio-Logic designs and manufactures potentiostats/galvanostats, battery cyclers and scanning probe electrochemical workstations.

    He received his engineer diploma from Polytechnic Institute of Grenoble in electrochemistry and materials in 2003. He then received his Ph.D. at Université de Bourgogne in 2008. Prior to joining Bio-Logic in 2011, he was a post-doc at the Ohio State University, Columbus.

    Buy Now
  • Placeholder

    EIS for Energy Storage Tutorial Course 3/3 – Application Examples in Energy Storage Taken From The Literature

    This presentation will give some examples of applications of EIS to various types of energy storage – for example, intercalation batteries (LFP, LCO, NiCd, NiMH etc.), lead acid batteries, and redox flow batteries. The examples are taken from research literature. The review will not be exhaustive, but it will provide examples that are considered relevant. For each application, some elements of comparison between EIS and DC methods will be given.

    This webinar will focus on the following key topics:

    • Examples in insertion batteries
    • Examples in lead acid batteries
    • Examples in redox flow batteries
    • Examples in supercapacitors
    • Comparison with DC methods

    Presenter
    Dr. Nicolas Murer – Product Manager and Applications Engineer at Bio-Logic SAS, France

    Nicolas Murer is an application and product manager at Bio-Logic Science Instruments. Bio-Logic designs and manufactures potentiostats/galvanostats, battery cyclers and scanning probe electrochemical workstations.

    He received his engineer diploma from Polytechnic Institute of Grenoble in electrochemistry and materials in 2003. He then received his Ph.D. at Université de Bourgogne in 2008. Prior to joining Bio-Logic in 2011, he was a post-doc at the Ohio State University, Columbus.

    Buy Now
  • Placeholder

    All Solid-State Batteries and the Future of Energy Storage

    The development of all solid-state batteries (ASSBs) has seen tremendous progress in recent years. However, several barriers still need to be overcome before ASSBs can be commercialized. These obstacles include poor interfacial stability, scalability challenges as well as the difficulty to precisely diagnose problems within the cell. Additionally, efforts to develop sustainable recyclability in lithium ion batteries are still lacking. In this webinar, we discuss SSEs chemistries and its implications on interfacial stability. We also cover the current state-of-the-art characterization techniques and evaluate future ASSB prototyping strategies. Finally, we hope to discuss potential strategies toward a sustainable ASSB recycling model to address the growing lithium ion battery waste problem.

    This webinar will focus on the following key topics:

    • Overview of solid-state batteries and solid-state electrolyte research
    • Importance of interfacial stability – correlate chemical, electrochemical and mechanical-induced reactions
    • Challenges for diagnosis / characterization of buried interfaces and lithium dendrites
    • Scalable fabrication considerations of commercialized all-solid-state batteries
    • Sustainability – Battery recycling concerns of Cost, Efficiency and the Environment

    Presenters
    Dr. Y. Shirley Meng – Professor at University of California San Diego
    Darren Tan – Founder and CTO at Unigrid Pte. Ltd.

    Dr. Y. Shirley Meng holds the Zable Endowed Chair Professor in Energy Technologies and is professor in NanoEngineering at UC San Diego. Shirley is the principal investigator of the research group – Laboratory for Energy Storage and Conversion (LESC). She is the founding Director of Sustainable Power and Energy Center (SPEC).

    Darren Tan is a founder and CTO of Unigrid Pte. Ltd. He is also a Chemical Engineering PhD student working at UC San Diego with the LESC group.

    Buy Now
  • Placeholder

    Will Lithium-Sulfur Batteries be Part of the Future of Energy Storage?

    Lithium-sulfur batteries can displace lithium-ion by delivering higher specific energy at a lower cost. Presently, however, the superior energy performance fades rapidly due to instability issues of the electrodes and the electrolyte. Extensive research and considerable progress over the past ten years have solved the instability issue of the sulfur electrode to a large extent. However, the formidable challenges of the more difficult electrode, lithium metal, (safety and cyclability) are yet to be resolved. Therefore, Lithium-Sulfur battery research programs should have at their heart, stabilizing the lithium electrode, as addressing it is predicted to ensure a rapid transition to commercial level life-spans. After all, the highest specific energy can be achieved by battery chemistries that utilize lithium metal as the negative electrode.

    This webinar will focus on the following key topics:

    • What’s so good about sulfur?
    • Great capacity brings great stress!
    • Will we see the revolutionary return of Lithium metal?
    • Electrolyte challenges (we need too much of it but it’s heavy!)
    • Current status and future prospects

    Presenter
    Dr. Mahdokht Shaibani  – Research Fellow at Monash University

    Dr. Mahdokht Shaibani  has expertise in materials synthesis, engineering, and scale-up for next-generation energy storage systems including lithium-sulfur batteries, silicon anodes, flow batteries, supercapacitors, and lithium-ion capacitors. She has conducted research in developing expansion-tolerant architectures for high capacity electrodes such as sulfur and silicon, fabrication of separators, synthesis of graphene and carbon materials for supercapacitors, and exploring the use of lithium-sulfur batteries for more sustainable and clean transportation and grid storage. Mahdokht has a PhD in Mechanical Engineering, with a focus on energy storage from Monash University, Australia.

    Buy Now