Showing 5–8 of 140 results
-
Challenges in Processing Large-Scale Sulfide-Based All-Solid-State Batteries
Sulfide-based all-solid-state batteries are one of the most promising next generation energy storages. Especially the chlor-Argyrodite material Li6PS5Cl and ceramic sulfide Li7P3S11 are attractive solid electrolyte materials due to their high ionic conductivity. To date a lot of research in terms of material chemistry and cell design is presented in literature. From a production point of view, process parameter studies and process engineering are rarely addressed. To fabricate a thin-film sheet of the separator or composite cathode, conventional wet coating techniques from lithium-ion battery production can be applied, but processing has to be adapted to the properties of the sulfidic materials. Besides stable production atmospheres, the optimized processing is crucial to achieve the maximum possible energy density.
This webinar will focus on the following key topics:
• Changes in Manufacturing Processes from LIB to ASSB
• Requirements for Stable Production Atmospheres
• Choice of Process Parameters (Mixing, Coating, Drying)
• Correlation between cell energy density and optimizing manufacturing processesPresenter
Celestine Singer – Research Associate at TUMint. Energy Research GmbHCelestine Singer is a Research Associate and PhD Candidate for All-Solid-State Battery Production at TUMint. Energy Research GmbH. Previously, she studied Mechanical Engineering at RWTH Aachen, TU München in Germany and holds a M.Sc. degree.
Buy Now -
Failure Analysis of Next Generation Si Based Anodes
Silicon (Si) is an attractive alternative to graphite due to its high theoretical capacity of 3500 mAh-g-1 and its high abundance on earth. Unfortunately, Si is plagued by significant volume expansion during charge/discharge, upwards of 300%. As a result, researchers and companies have focused their attention on mitigating the disadvantages of Si. With various methods the aim is to create a Si based anode that has a stability comparable or better then graphite. With increasing interest, it is important to discuss and determine abuse testing and failure analysis techniques that can effectively determine the durability of these new anodes.
This webinar will focus on the following key topics:
• Why is it important to look at alternative anodes to graphite?
• The advantages and disadvantages of Si based anodes
• Creation of new anodes to alleviate the disadvantages of Si
• Customized abuse testing and failure analysis of Si based anode cellsPresenter
Emily Klein – Materials Scientist and Engineer at Energy AssuranceEmily Klein is a materials scientist and engineer at Energy Assurance. She earned her bachelor and master’s degrees in materials science and engineering at Georgia Institute of Technology (Georgia Tech). At Energy Assurance she supports clients with tailored abuse testing, cell and pack quality evaluations, and failure analysis. Prior to joining Energy Assurance, her research at the U.S. Naval Research Laboratory and Georgia Tech was focused on materials selection, performance testing, and safety testing for lithium-ion, solid-state systems, lithium metal systems, and alloy anodes.
Energy Assurance is a proud sponsor of this event.
Buy Now -
A New Generation of Aging Models for Lithium-ion Batteries
Over the past years, scientists have invested a lot of time and resources to optimize semi-empirical, physico-chemical, and data-driven simulation models. All of them show different challenges and limitations. To overcome this dead end, scientists and engineers combine physicochemical-mechanical degradation effects and integrate them into (semi)-empirical as well as data-driven approaches. We call this combination physics-motivated semi-empirical aging models.
This webinar will focus on the following key topics:
• How capacity aging model is optimized using bootstrap resampling
• The new generation of physics-motivated semi-empirical aging models: OCV aging, degradation modes, understanding the accuracy of models, simulation of swelling force
• The new TWAICE simulation model portfolio: base model, customized base model, premium model
• Vision and outlookPresenters
Dr. Michael Baumann – Co-CEO at TWAICE
Lennart Hinrichs – Executive VP & GM Americas at TWAICEDr. Michael Baumann is Co-CEO at TWAICE. Before founding TWAICE with Dr. Stephan Rohr, Michael completed his Ph.D. at the Technical University of Munich. Michael’s battery specific domain expertise derives from over 6 years of academic research in Harvard, Berkeley, and Singapore, into Li-ion batteries with a particular focus on the Electric-thermal modelling and prediction of aging behavior for lithium-ion batteries.
Lennart Hinrichs is currently driving forward the commercial side of TWAICE, with a particular focus on sales and the market strategy. Lennart worked in strategy consulting, driving the business model development and go-to-market strategy in industries ranging from consumer goods to telecommunications and automotive.
TWAICE is a proud sponsor of this event.
Buy Now -
Latest Advancements in Calorimetry for Battery Performance and Safety
This presentation covers two essential calorimetric techniques for performance and safety testing of high-energy batteries. Starting with THT’s latest innovation, the IBCx, an isothermal battery calorimeter that delivers precise thermal control, providing crucial insights into the effects of C-rates on heat output, efficiency, and temperature during charge and discharge cycles. The IBCx also allows for quick measurement of heat capacity within the same system.
As the battery market shifts toward larger, higher-capacity cells in the form of long, thin blade cells, THT has developed its largest adiabatic ARC. The ARC is designed to evaluate the thermal stability and safety limits of these batteries under extreme conditions such as elevated temperatures, overcharge, short circuit and nail penetration. The presentation also highlights complementary test methods including online gas analysis.
This webinar will focus on the following key topics:
• Principles of isothermal and adiabatic calorimetry testing for high-energy batteries
• Advantages and limitations of these two methods
• New product developments from THT to address market demand for testing of large format, high-capacity cells
• Integration of on-line gas analysis with ARC testingPresenter
Danny Montgomery – Technical Performance Manager at THTDanny Montgomery has worked at THT UK for 15 years. He joined the company after graduating from Southampton University with a master’s degree in physics. His current position is Technical Performance Manager. He manages THT’s test lab, and continues to expand their testing capability into new areas of interest for a range of high-profile clients. Danny is also involved with technical support, installation, and training for THT’s calorimeter systems. He has provided battery calorimetry training for major international companies such as Panasonic, LG, Samsung, BMW and UL.
THT is a proud sponsor of this event.
Buy Now