Showing 13–16 of 94 results

  • Placeholder

    BMS Tutorial Course 3/3: Gain More Visibility Into Your Energy Storage System

    Long-term ownership and management of an energy storage system requires high visibility into the batteries to enable problem identification and resolution, compare actual vs. predicted degradation curves, and plan for capacity augmentation. Real-time diagnostics and historical battery health data can be utilized to improve system reliability and reduce the total cost of ESS ownership. Join Nuvation Energy CEO Michael Worry for an examination of how battery data analytics can be retrieved from the BMS and utilized to optimize system maintenance and contribute to the long-term viability of the energy storage system.

    This webinar will focus on the following key topics:

    • Business impacts of low visibility into internal battery operation
    • Problems frequently encountered by operators in the field
    • “Cell to cloud” remote system diagnosis
    • Battery warranty tracking

    Presenter
    Michael Worry – CEO at Nuvation Energy

    Michael Worry founded Nuvation in 1997 and has grown the company into a thriving electronic products and engineering services firm with offices in Sunnyvale, California and Waterloo, Ontario Canada. He is the CEO and CTO of Nuvation Energy, a provider of battery management systems and engineering design solutions for large-scale energy storage. Michael has been a hands-on engineer throughout his career. He is deeply involved in battery management and energy storage system design and can often be found working on energy storage system installations at client sites.

    Nuvation Energy is a proud sponsor of this event.

    Buy Now
  • Placeholder

    Solid-State Li-Ion Batteries – Key Technology Approaches & Time-to-Market

    Attendees will learn which solid-state batteries have been launched already into beachhead markets, and which technology barriers for now prevent deployment in mass EV applications. Risks & opportunities identified in IP portfolios by large battery & automotive manufacturers and key startups will be compared with go-to-market & technology readiness statements. Finally, we will explain why hybrid battery packs or cells based on both liquid and solid electrolytes could potentially accelerate the automotive adoption of solid-state batteries.

    This webinar will focus on the following key topics:

    • Solid-state Li-ion batteries
    • Key innovation approaches & global patent literature
    • Time-to-market with respect to key applications: electronics/IoT, medical implants, automotive/rolling stock, stationary energy storage
    • Examples of solid electrolyte, cathode & anode selection
    • Combination of solid electrolytes with liquid electrolytes at the pack or cell level

    Presenter
    Dr. Pirmin Ulmann – Co-Founder & CEO, B-Science.net

    Dr. Pirmin Ulmann is co-founder and CEO of b-science.net, an information service for the battery patent literature that is based on a supervised machine learning approach. Pirmin obtained a diploma in chemistry from ETH Zurich (Switzerland) in 2004 and a PhD from Northwestern University (USA) in 2009, followed by a postdoc at Tokyo University (Japan). From 2010 to 2016, while working at a major Li-ion battery materials manufacturer, he was a co-inventor of 7 patent families. He holds the credential Stanford Certified Project Manager and has co-authored scientific publications with more than 1,500 citations.

    Buy Now
  • Placeholder

    EIS for Energy Storage Tutorial Course 1/3 – Basics of Electrochemical Impedance Spectroscopy

    The theoretical principles of Electrochemical Impedance Spectroscopy (EIS) are given. Details on what is being measured and which information it gives on the studied system are also explained. Some elements will be given on how an EIS measurement is performed from an instrumental point of view. Finally, the requirements that EIS must fulfill are presented.

    This webinar will focus on the following key topics:

    • What is an EIS measurement?
    • Which information do we get from this measurement?
    • How is it performed?
    • Which requirements should it fulfill?

    Presenter
    Dr. Nicolas Murer – Product Manager and Applications Engineer at Bio-Logic SAS, France

    Nicolas Murer is an application and product manager at Bio-Logic Science Instruments. Bio-Logic designs and manufactures potentiostats/galvanostats, battery cyclers and scanning probe electrochemical workstations.

    He received his engineer diploma from Polytechnic Institute of Grenoble in electrochemistry and materials in 2003. He then received his Ph.D. at Université de Bourgogne in 2008. Prior to joining Bio-Logic in 2011, he was a post-doc at the Ohio State University, Columbus.

    Buy Now
  • Placeholder

    EIS for Energy Storage Tutorial Course 2/3 – How to Perform Good and Reliable EIS Measurements

    Electrochemical Impedance Spectroscopy (EIS) is a powerful technique, but it might be difficult to know which parameters to set as it really depends on the studied system. We give a few guidelines and tools needed to set the right amplitude, as well as other experimental parameters of interest that can increase the accuracy and the reliability of your measurement.

    A discussion will be given about when and whether to choose between potentio-controlled or galvano-controlled EIS.

    Finally, we will give recommendations on the conditions that the system under study should fulfill, especially time-variance, with some examples on the effect it has on impedance data and how to correct them.

    This webinar will focus on the following key topics:

    • How to choose the amplitude of the input signal?
    • How to choose between PEIS and GEIS?
    • What do I need to check on my system?

    Presenter
    Dr. Nicolas Murer – Product Manager and Applications Engineer at Bio-Logic SAS, France

    Nicolas Murer is an application and product manager at Bio-Logic Science Instruments. Bio-Logic designs and manufactures potentiostats/galvanostats, battery cyclers and scanning probe electrochemical workstations.

    He received his engineer diploma from Polytechnic Institute of Grenoble in electrochemistry and materials in 2003. He then received his Ph.D. at Université de Bourgogne in 2008. Prior to joining Bio-Logic in 2011, he was a post-doc at the Ohio State University, Columbus.

    Buy Now