Showing 17–20 of 142 results

  • Placeholder

    Low Data Machine Learning for Accelerated Degradation Prediction of Lithium-ion Batteries

    Meeting the demand for reliable energy storage, this work presents a machine-learning model for precise cycle life prediction in lithium-ion batteries (LIB). It explores battery aging features, utilizes data-driven methods for health assessment, and applies machine learning to predict cycle life. To address data limitations, synthetic data generation is employed, enhancing prediction accuracy. The presentation concludes by demonstrating the practical deployment of the proposed ML model for accelerated degradation prediction (for battery cell development and manufacturing feedback) and onboard deployment of low data AI on in-operation energy management. Discussions cover crucial aspects such as battery aging, data-driven health measurement, and the model’s versatility in handling accidental effects during operation.

    This webinar will focus on the following key topics:

    • Accelerated degradation based on low data AI for battery development for targeted applications
    • Data-driven insights: machine learning for battery state of health assessment
    • Prediction of rejection thresholds during cell manufacturing for application oriented cell development
    • Prediction of targeted C-Rates for specific device applications
    • Real-world impact: practical deployment of low data ML during real time device operation

    Presenter
    Dr. Vikas Tomar – Professor at Purdue University

    Prof. Tomar’s interests lie in directed cell development using low data AI and vertical integration of targeted cells in c-rate and energy density specific devices. His research group has published extensively in topics related to developing data-driven models for agnostic BMS in UAVs and EVs, predicting degradation of COTS Li-ion batteries. The technology is now part of a startup, Primordis Inc., focused on launching vertically integrated Li-ion cells in autonomous systems within the framework of autonomous energy intelligence using an ASIC technology.

    Buy Now
  • Placeholder

    Caution – You Might NOT Have Freedom to Infringe Expired Patents!

    A patent term is generally limited to twenty-years from its filing date. Since the battery industry is more than twenty-years mature, certain seminal battery patents covering active materials, electrolytes, and separators are going offline. Does that mean anyone can practice what these patents claim? Or have the patent owners found ways to evergreen and extend their effective patent terms? This webinar will discuss freedom-to-operate in view of expired patents and the second-generation patents that followed.

    This webinar will focus on the following key topics:

    • Seminal battery patents that were filed more than twenty-years ago are going offline
    • Does that mean you can infringe those patents with impunity?
    • It depends on whether the patent owners have found means to extend their patent monopoly
    • How can one evergreen a battery patent portfolio and what does that mean for competitors that want to practice expired patents?

    Presenter
    Todd Ostomel – Partner at Squire Patton Boggs

    Todd focuses on patent prosecution and portfolio management, patent opinions, due diligence, utility and design patent applications, and trade secret counseling. Todd has extensive experience preparing and prosecuting US and international patent applications for energy storage devices, rechargeable battery materials, small and large molecules, ceramics, polymorphs, biofuels, diagnostics, chemical processes, cryptocurrency, LEDs, photovoltaics, and machine learning technology. Todd also has extensive experience with trade secret enforcement.

    His clients appreciate his ability to understand the technical details of their inventions as well as the legal issues relevant to their business goals.

    PlugVolt is a proud sponsor of this event.

    Buy Now
  • Placeholder

    Results from a Comprehensive Battery Benchmarking Index

    This talk introduces a comprehensive battery benchmarking index that provides data-backed insights into cell performance needed to evaluate and select the optimal batteries for your application. In this talk, we present a broad and diversified cell database and present the preliminary results from rigorous comparative analysis of these cells. We will end with industry leading battery analytics, enabling customer organizations to be agile and employ best practices with regard to testing and analysis in engineering.

    This webinar will focus on the following key topics:

    • Comparative analysis of cells in recently released products including EVs and power tools
    • Demonstration of large scale analysis across the benchmarking database
    • Demonstration of leveraging models and experimental data together

    Presenters
    Dr. Christianna Lininger – Director of Battery Engineering and Sciences at Voltaiq
    Dr. Jan Richter – CEO and Co-Founder at Batemo

    Dr. Christianna Lininger is the Director of Battery Engineering and Sciences at Voltaiq. She has a Master of Science (M.S.) and Doctor of Philosophy (Ph.D.) focused in Chemical Engineering from Columbia University in the City of New York. Following her graduate studies she undertook post-doctoral studies at University of California, Berkeley. Her research was focused on theoretical computational chemistry and physics-based modeling for renewable energy technologies.

    Dr.-Ing. Jan Richter studied electrical engineering and information technology at the Karlsruhe Institute of Technology (KIT). He focused on electric mobility and the fields of electrochemical energy storage, power electronics, and electrical machines. He has completed his doctorate on modelling, parameter identification and control of highly-utilized synchronous machines, graduating summa cum laude.

    Voltaiq is a proud sponsor of this event.

    Buy Now
  • Placeholder

    Detailed Approaches for Post-Mortem Analysis of Lithium Ion Batteries

    Performance degradation of Lithium Ion Batteries (LIBs) is an important problem not only battery users, but also for battery manufacturers and material suppliers. In this webinar, we will present two topics related to the Post-Mortem analysis of LIBs – one is the performance degradation of SiO anode, and the other is a detailed procedure for the quantitative analysis of electrolyte decomposition and SEI formation on graphite negative electrode.

    Toray Research Center can provide detailed and comprehensive data analysis of chemical and morphological changes, using latest instruments, to support material and product performance improvements. Customers can utilize the data set to investigate what may have happened inside the battery, and can correlate the performance degradation with that data analysis.

    This webinar will focus on the following key topics:

    • Lithium Ion battery
    • Post-Mortem analysis
    • SiO anode
    • Electrolyte degradation and SEI formation
    • Morphological observation and Composition analysis

    Presenter
    Yasuhito Aoki – Researcher at Toray Research Center

    Yasuhito Aoki is a researcher at Toray Research Center. He has been working on material analysis of battery related materials using Raman and infrared spectroscopy.

    Toray Research Center, Inc. is a proud sponsor of this event.

    Buy Now