Showing 25–28 of 148 results

  • Placeholder

    Going Electric – But How, When, and By Whom?

    Sales of battery electrics are surging, but the market is unsettled. In the last year companies have piled on the price increases, while mostly failing to meet their own production goals. But companies throughout the industry are ramping up their spending, with public investment (and regulation) pouring in as well.

    Is the focus on the high end or is the market moving mainstream? Yes.

    We will discuss product successes and failures, and what it will take for the latter to become the former. We will evaluate the major players including their key products, marketing approaches, and whether they have and/or will hit the mark.

    We will assess the outlook for industry participants as changes in production, manufacturing and design techniques, regulation, and battery technologies evolve.

    This webinar will focus on the following key topics:

    • Current sales and products, forecasted to 2030
    • The industry is throwing a party, albeit with different levels of commitment, sales, and production strategies
    • Impact of the Inflation Reduction Act and forthcoming EPA and California regulations
    • Opportunities and risks due to the evolving battery and materials market

    Presenter
    Alan Baum – Principal, Baum & Associates

    Alan Baum formed Baum & Associates in August 2009. The company produces a detailed sales forecast, market analysis, and product life cycle for the range of electrified vehicles and provides monthly sales results for these vehicles. Baum analyzes the impact of alternative fuel vehicles as well as advanced technologies in internal combustion engines that provide improved fuel economy. He consults with suppliers, the financial community, government agencies, and non-governmental organizations. Since the 1980s, Baum has produced an automotive production forecast with detailed analysis of the automotive market.

    PlugVolt is a proud sponsor of this event.

    Buy Now
  • Placeholder

    IP Landscape, Strategies & Protection for Li-Ion Battery Solid-State Electrolytes and Silicon-Based Anodes

    The audience will learn about recent key inventions in the areas of solid electrolytes and silicon anodes for Li-ion batteries that constitute the state of the art. Exemplified by a look at two new-comers (startups) and two incumbents, attendees will further learn about how to approach IP strategy & protection for their R&D programs.

    This webinar will focus on the following key topics:

    • IP landscape, strategies & protection
    • Solid-state electrolytes for Li-ion batteries
    • Silicon-based anodes

    Presenters
    Howard Lim – Associate Attorney, Fenwick & West LLP
    Pirmin Ulmann – Co-Founder & CEO, B-Science.net

    Howard represents technology-based clients in patent litigation matters and postgrant proceedings, such as inter partes reviews. He has technical experience in the area of lithium-ion batteries, electric vehicles, semiconductors, semiconductor manufacturing equipment, and LCD and OLED display technologies. Prior to becoming a lawyer, Howard had a substantial career in the lithium-ion battery industry working for Panasonic and Sanyo Electric Company developing new products in the areas of electric vehicle and energy storage technologies.

    Pirmin is co-founder and CEO of b-science.net, a battery innovation & patent monitoring service that is based on a novel machine learning approach. He obtained a diploma in chemistry from ETH Zurich (Switzerland) in 2004 and a PhD from Northwestern University (USA) in 2009. Thereafter, he was a JSPS Foreign Fellow at the University of Tokyo (Japan). From 2010 to 2016, while working at a major battery materials manufacturer in Switzerland, he was a coinventor of 7 patent families related to lithium-ion batteries. He holds the credential Stanford Certified Project Manager (SCPM) and has co-authored scientific publications with more than 1,600 citations.

    Buy Now
  • Placeholder

    Low Data Machine Learning for Predicting Lithium-ion Battery Aging

    Meeting the demand for reliable energy storage, this work presents a machine-learning model for precise cycle life prediction in lithium-ion batteries (LIB). It explores battery aging features, utilizes data-driven methods for health assessment, and applies machine learning to predict cycle life. To address data limitations, synthetic data generation is employed, enhancing prediction accuracy. The presentation concludes by demonstrating the practical deployment of the proposed ML model on a battery management system, showcasing its potential impact on power usage efficiency. Discussions cover crucial aspects such as battery aging, data-driven health measurement, and the model’s versatility in handling accidental effects during operation.

    This webinar will focus on the following key topics:

    • Unveiling Battery Aging: identifying key aging features
    • Data-Driven Insights: machine learning for battery state of health assessment
    • Cycle Life Precision: machine learning in Lithium-Ion battery predictions
    • Addressing Data Gaps: synthetic data for enhanced prediction accuracy
    • Real-World Impact: practical deployment of ML on battery management systems

    Presenter
    Meghana Sudarshan – Ph.D. Candidate at Purdue University

    Meghana Sudarshan is currently pursuing a Ph.D. from the School of Aeronautics and Astronautics at Purdue University. Her research focuses on developing data-driven models agnostic battery management systems in UAVs and electric vehicles for predicting degradation of COTS (Commercial Off-The-Shelf) Li-ion Batteries as a function of operation parameters.

    Buy Now
  • Placeholder

    Electrode Damage Characterization in Li-Ion Batteries Using Raman Spectroscopy

    While Li-Ion battery technology has continually advanced to provide cells that are smaller and more powerful, compromised safety concerns due to physical damage are always present. Physical damage to a Li-Ion battery can significantly affect its operational performance, causing accelerated degradation and capacity fade. Damage to electrodes and removal of active material lead to microstructural changes in electrode material and unbalanced current distribution, causing polarization in cells. This work focuses on characterizing the effects of partial nail penetrations on electrodes in cells that continue cycling after being damaged by using Raman spectroscopy and incremental capacity analysis. This helps to determine the type and extent of damage to the electrodes over the course of their abbreviated lifetime.

    This webinar will focus on the following key topics:

    • Dynamic impact testing of prismatic Li-Ion cells
    • Raman spectroscopy analysis for anode damage characterization
    • Increased polarization due to unbalanced current distribution
    • Accelerated degradation caused by physical damage
    • Incremental capacity analysis to determine mechanisms of aging

    Presenter
    Casey Jones – Ph.D. Candidate at Purdue University

    Casey Jones is a PhD student in the School of Aeronautics and Astronautics at Purdue University, where he works in the Interfacial Multiphysics Laboratory for Dr. Vikas Tomar. His research focuses on destructive testing of Li-ion batteries and the characterization of the effects on cell operation and is funded by the Office of Naval Research. Prior to studying at Purdue he served in the US Navy as a nuclear electronics technician aboard a fast-attack submarine based in Pearl Harbor, and received his BS in Mechanical Engineering from the University of Hawai’i at Manoa.

    Buy Now